PT-Symmetric Periodic Optical Potentials

被引:1
作者
Makris, K. G. [1 ]
El-Ganainy, R. [2 ]
Christodoulides, D. N. [3 ]
Musslimani, Z. H. [4 ]
机构
[1] Swiss Fed Inst Technol Lausanne EPFL, Sch Engn, Opt Lab, CH-1015 Lausanne, Switzerland
[2] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[3] Univ Cent Florida, Coll Opt & Photon CREOL, Orlando, FL 32816 USA
[4] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
PT-symmetry; Non-Hermitian; PT-operators; Wave propagation; Guided waves; Optical lattices; Optical solitons; Periodic potentials; Gain-loss media; NON-HERMITIAN HAMILTONIANS; BLOCH WAVES; PHYSICS; COMPLEX;
D O I
10.1007/s10773-010-0625-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum theory, any Hamiltonian describing a physical system is mathematically represented by a self-adjoint linear operator to ensure the reality of the associated observables. In an attempt to extend quantum mechanics into the complex domain, it was realized few years ago that certain non-Hermitian parity-time (PT) symmetric Hamiltonians can exhibit an entirely real spectrum. Much of the reported progress has been remained theoretical, and therefore hasn't led to a viable experimental proposal for which non Hermitian quantum effects could be observed in laboratory experiments. Quite recently however, it was suggested that the concept of PT-symmetry could be physically realized within the framework of classical optics. This proposal has, in turn, stimulated extensive investigations and research studies related to PT-symmetric Optics and paved the way for the first experimental observation of PT-symmetry breaking in any physical system. In this paper, we present recent results regarding PT-symmetric Optics.
引用
收藏
页码:1019 / 1041
页数:23
相关论文
共 43 条
[21]   Analytically solvable PT-invariant periodic potentials [J].
Khare, A ;
Sukhatme, U .
PHYSICS LETTERS A, 2004, 324 (5-6) :406-414
[22]   Periodic potentials and PT symmetry [J].
Khare, Avinash ;
Sukhatme, Uday .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (32) :10133-10142
[23]   Visualization of branch points in PT-symmetric waveguides [J].
Klaiman, Shachar ;
Guenther, Uwe ;
Moiseyev, Nimrod .
PHYSICAL REVIEW LETTERS, 2008, 101 (08)
[24]   ANALYTIC PROPERTIES OF BLOCH WAVES AND WANNIER FUNCTIONS [J].
KOHN, W .
PHYSICAL REVIEW, 1959, 115 (04) :809-821
[25]   OPTICAL PHYSICS Broken symmetry makes light work [J].
Kottos, Tsampikos .
NATURE PHYSICS, 2010, 6 (03) :166-167
[26]   Dynamic localization and transport in complex crystals [J].
Longhi, S. .
PHYSICAL REVIEW B, 2009, 80 (23)
[27]   Bloch Oscillations in Complex Crystals with PT Symmetry [J].
Longhi, S. .
PHYSICAL REVIEW LETTERS, 2009, 103 (12)
[28]   Spectral singularities in a non-Hermitian Friedrichs-Fano-Anderson model [J].
Longhi, Stefano .
PHYSICAL REVIEW B, 2009, 80 (16)
[29]   Beam dynamics in PT symmetric optical lattices [J].
Makris, K. G. ;
El-Ganainy, R. ;
Christodoulides, D. N. ;
Musslimani, Z. H. .
PHYSICAL REVIEW LETTERS, 2008, 100 (10)
[30]   PT-symmetric optical lattices [J].
Makris, Konstantinos G. ;
El-Ganainy, Ramy ;
Christodoulides, Demetrios N. ;
Musslimani, Z. H. .
PHYSICAL REVIEW A, 2010, 81 (06)