A convolutional neural network model for battery capacity fade curve prediction using early life data

被引:59
作者
Saxena, Saurabh [1 ]
Ward, Logan [2 ]
Kubal, Joseph [3 ]
Lu, Wenquan [3 ]
Babinec, Susan [4 ]
Paulson, Noah [1 ]
机构
[1] Argonne Natl Lab, Appl Mat Div, Lemont, IL 60439 USA
[2] Argonne Natl Lab, Data Sci & Learning Div, Lemont, IL 60439 USA
[3] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[4] Argonne Natl Lab, Argonne Collaborat Ctr Energy Storage Sci ACCESS, Lemont, IL 60439 USA
关键词
Lithium-ion battery; Capacity fade; State of health; End of life; Machine learning; CHEMICAL DEGRADATION; LITHIUM; OPTIMIZATION; PERFORMANCE; PROGNOSTICS;
D O I
10.1016/j.jpowsour.2022.231736
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Early prediction of battery performance degradation trends can facilitate research of new materials and cell designs, rapid deployment of batteries in real-world applications, timely replacement of batteries in critical applications, and even the secondary use market. In this study, we design a convolutional neural network model to predict the entire battery capacity fade curve - a critical indicator of battery performance degradation - using first 100 cycles of data (~ three weeks of testing). We use the discharge voltage-capacity curves as input to the model and automate the feature extraction process through the convolutional layers of the network. Our approach can predict the per cycle capacity fade rate and rollover cycle (knee point) in the capacity fade curve, which indicate the onset of rapid capacity decay. On the publicly available graphite/LiFePO4 battery dataset, optimized networks predict the capacity fade curves, rollover cycle, and end of life with 3.7% (worst-case), 19%, and 17% mean absolute percentage errors, respectively.
引用
收藏
页数:10
相关论文
共 30 条
  • [1] Closed-loop optimization of fast-charging protocols for batteries with machine learning
    Attia, Peter M.
    Grover, Aditya
    Jin, Norman
    Severson, Kristen A.
    Markov, Todor M.
    Liao, Yang-Hung
    Chen, Michael H.
    Cheong, Bryan
    Perkins, Nicholas
    Yang, Zi
    Herring, Patrick K.
    Aykol, Muratahan
    Harris, Stephen J.
    Braatz, Richard D.
    Ermon, Stefano
    Chueh, William C.
    [J]. NATURE, 2020, 578 (7795) : 397 - +
  • [2] Main aging mechanisms in Li ion batteries
    Broussely, M
    Biensan, P
    Bonhomme, F
    Blanchard, P
    Herreyre, S
    Nechev, K
    Staniewicz, RJ
    [J]. JOURNAL OF POWER SOURCES, 2005, 146 (1-2) : 90 - 96
  • [3] Battery Cycle Life Prediction with Coupled Chemical Degradation and Fatigue Mechanics
    Deshpande, Rutooj
    Verbrugge, Mark
    Cheng, Yang-Tse
    Wang, John
    Liu, Ping
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (10) : A1730 - A1738
  • [4] MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL
    DOYLE, M
    FULLER, TF
    NEWMAN, J
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) : 1526 - 1533
  • [5] Fermin-Cueto P, 2020, Energy and AI, V1
  • [6] SIMULATION AND OPTIMIZATION OF THE DUAL LITHIUM ION INSERTION CELL
    FULLER, TF
    DOYLE, M
    NEWMAN, J
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) : 1 - 10
  • [7] Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method
    He, Wei
    Williard, Nicholas
    Osterman, Michael
    Pecht, Michael
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (23) : 10314 - 10321
  • [8] BEEP: A Python']Python library for Battery Evaluation and Early Prediction
    Herring, Patrick
    Gopal, Chirranjeevi Balaji
    Aykol, Muratahan
    Montoya, Joseph H.
    Anapolsky, Abraham
    Attia, Peter M.
    Gent, William
    Hummelshoj, Jens S.
    Hung, Linda
    Kwon, Ha-Kyung
    Moore, Patrick
    Schweigert, Daniel
    Severson, Kristen A.
    Suram, Santosh
    Yang, Zi
    Braatz, Richard D.
    Storey, Brian D.
    [J]. SOFTWAREX, 2020, 11
  • [9] Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning
    Hong, Joonki
    Lee, Dongheon
    Jeong, Eui-Rim
    Yi, Yung
    [J]. APPLIED ENERGY, 2020, 278
  • [10] Ioffe S., 2015, P 32 INT C MACHINE L, P448