α-cyanobacteria possessing form IA RuBisCO globally dominate aquatic habitats

被引:17
作者
Cabello-Yeves, Pedro J. [1 ]
Scanlan, David J. [2 ]
Callieri, Cristiana [3 ]
Picazo, Antonio [4 ]
Schallenberg, Lena [5 ]
Huber, Paula [6 ,7 ]
Roda-Garcia, Juan J. [1 ]
Bartosiewicz, Maciej [8 ]
Belykh, Olga, I [9 ]
Tikhonova, Irina, V [9 ]
Torcello-Requena, Alberto [2 ]
Martin De Prado, Paula [2 ]
Millard, Andrew D. [10 ]
Camacho, Antonio [4 ]
Rodriguez-Valera, Francisco [1 ,11 ]
Puxty, Richard J. [2 ]
机构
[1] Univ Miguel Hernandez, Dept Prod Vegetal & Microbiol, Evolutionary Genom Grp, Alicante, Spain
[2] Univ Warwick, Sch Life Sci, Coventry CV4 7AL, W Midlands, England
[3] Natl Res Council CNR, Inst Water Res IRSA, Verbania, Italy
[4] Univ Valencia, Cavanilles Inst Biodivers & Evolutionary Biol, E-46980 Valencia, Spain
[5] Univ Otago, Dept Zool, Dunedin, New Zealand
[6] UNSAM CONICET, Inst Tecnol Chascomus INTECH, Av Intendente Marino Km 8,200, RA-7130 Chascomus, Buenos Aires, Argentina
[7] CONICET UNL, Inst Nacl Limnol INALI, Ciudad Univ Paraje El Pozo S-N, RA-3000 Santa Fe, Argentina
[8] Univ Basel, Dept Environm Sci, Basel, Switzerland
[9] Russian Acad Sci, Limnol Inst, POB 278, Irkutsk 664033, Russia
[10] Univ Leicester, Dept Genet & Genome Biol, Leicester LE1 7RH, Leics, England
[11] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia
基金
欧洲研究理事会; 英国自然环境研究理事会;
关键词
CO2 CONCENTRATING MECHANISMS; BICARBONATE TRANSPORTER; ECOLOGICAL GENOMICS; CARBONIC-ANHYDRASE; SYNECHOCOCCUS; IDENTIFICATION; DIVERSITY; EVOLUTION; PICOCYANOBACTERIA; PROCHLOROCOCCUS;
D O I
10.1038/s41396-022-01282-z
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
RuBisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase) is one the most abundant enzymes on Earth. Virtually all food webs depend on its activity to supply fixed carbon. In aerobic environments, RuBisCO struggles to distinguish efficiently between CO2 and O-2. To compensate, organisms have evolved convergent solutions to concentrate CO2 around the active site. The genetic engineering of such inorganic carbon concentrating mechanisms (CCMs) into plants could help facilitate future global food security for humankind. In bacteria, the carboxysome represents one such CCM component, of which two independent forms exist: alpha and beta. Cyanobacteria are important players in the planet's carbon cycle and the vast majority of the phylum possess a beta-carboxysome, including most cyanobacteria used as laboratory models. The exceptions are the exclusively marine Prochlorococcus and Synechococcus that numerically dominate open ocean systems. However, the reason why marine systems favor an alpha-form is currently unknown. Here, we report the genomes of 58 cyanobacteria, closely related to marine Synechococcus that were isolated from freshwater lakes across the globe. We find all these isolates possess alpha-carboxysomes accompanied by a form 1A RuBisCO. Moreover, we demonstrate alpha-cyanobacteria dominate freshwater lakes worldwide. Hence, the paradigm of a separation in carboxysome type across the salinity divide does not hold true, and instead the alpha-form dominates all aquatic systems. We thus question the relevance of beta-cyanobacteria as models for aquatic systems at large and pose a hypothesis for the reason for the success of the alpha-form in nature.
引用
收藏
页码:2421 / 2432
页数:12
相关论文
共 93 条
  • [1] [Anonymous], 2004, Limnetica
  • [2] Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0
    Asnicar, Francesco
    Thomas, Andrew Maltez
    Beghini, Francesco
    Mengoni, Claudia
    Manara, Serena
    Manghi, Paolo
    Zhu, Qiyun
    Bolzan, Mattia
    Cumbo, Fabio
    May, Uyen
    Sanders, Jon G.
    Zolfo, Moreno
    Kopylova, Evguenia
    Pasolli, Edoardo
    Knight, Rob
    Mirarab, Siavash
    Huttenhower, Curtis
    Segata, Nicola
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism
    Badger, MR
    Price, GD
    Long, BM
    Woodger, FJ
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (02) : 249 - 265
  • [4] Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria
    Badger, MR
    Hanson, D
    Price, GD
    [J]. FUNCTIONAL PLANT BIOLOGY, 2002, 29 (2-3) : 161 - 173
  • [5] CO2 concentrating mechanisms in cyanobacteria:: molecular components, their diversity and evolution
    Badger, MR
    Price, GD
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 (383) : 609 - 622
  • [6] SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing
    Bankevich, Anton
    Nurk, Sergey
    Antipov, Dmitry
    Gurevich, Alexey A.
    Dvorkin, Mikhail
    Kulikov, Alexander S.
    Lesin, Valery M.
    Nikolenko, Sergey I.
    Son Pham
    Prjibelski, Andrey D.
    Pyshkin, Alexey V.
    Sirotkin, Alexander V.
    Vyahhi, Nikolay
    Tesler, Glenn
    Alekseyev, Max A.
    Pevzner, Pavel A.
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) : 455 - 477
  • [7] The biomass distribution on Earth
    Bar-On, Yinon M.
    Phillips, Rob
    Milo, Ron
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (25) : 6506 - 6511
  • [8] Cyanobacterial NDH-1 complexes: Novel insights and remaining puzzles
    Battchikova, Natalia
    Eisenhut, Marion
    Aro, Eva-Mari
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2011, 1807 (08): : 935 - 944
  • [9] Trimmomatic: a flexible trimmer for Illumina sequence data
    Bolger, Anthony M.
    Lohse, Marc
    Usadel, Bjoern
    [J]. BIOINFORMATICS, 2014, 30 (15) : 2114 - 2120
  • [10] A putative HCO-3 transporter in the cyanobacterium Synechococcus sp. strain PCC 7942
    Bonfil, DJ
    Ronen-Tarazi, M
    Sültemeyer, D
    Lieman-Hurwitz, J
    Schatz, D
    Kaplan, A
    [J]. FEBS LETTERS, 1998, 430 (03): : 236 - 240