Galectin-3 Enhances Vascular Endothelial Growth Factor-A Receptor 2 Activity in the Presence of Vascular Endothelial Growth Factor

被引:7
作者
Cano, Issahy [1 ,2 ]
Hu, Zhengping [1 ,2 ]
AbuSamra, Dina B. B. [1 ,2 ]
Saint-Geniez, Magali [1 ,2 ]
Ng, Yin Shan Eric [1 ,2 ]
Argueso, Pablo [1 ,2 ]
D'Amore, Patricia A. A. [1 ,2 ,3 ]
机构
[1] Schepens Eye Res Inst Massachusetts Eye & Ear, Boston, MA USA
[2] Harvard Med Sch, Dept Ophthalmol, Boston, MA USA
[3] Harvard Med Sch, Dept Pathol, Boston, MA USA
关键词
endothelium; angiogenesis; ranibizumab; glycocalyx; migration; N-GLYCOSYLATION; UP-REGULATION; VEGF; EXPRESSION; ANGIOGENESIS; PROGRESSION; ACTIVATION; CANCER; LIGAND;
D O I
10.3389/fcell.2021.734346
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Galectin-3 (Gal3) is a carbohydrate-binding protein reported to promote angiogenesis by influencing vascular endothelial growth factor-A receptor 2 (VEGFR2) signal transduction. Here we evaluated whether the ability of Gal3 to function as an angiogenic factor involved vascular endothelial growth factor (VEGF). To address this possibility we used human retinal microvascular endothelial cells (HRECs) to determine whether exogenous Gal3 requires VEGF to activate VEGFR2 signaling and if Gal3 is required for VEGF to activate VEGFR2. VEGFR2 phosphorylation and HREC migration assays, following either VEGF neutralization with ranibizumab or Gal3 silencing, revealed that VEGF endogenously produced by the HRECs was essential for the effect of exogenous Gal3 on VEGFR2 activation and cell migration, and that VEGF-induced VEGFR2 activation was not dependent on Gal3 in HRECs. Gal3 depletion led to no reduction in VEGF-induced cell function. Since Gal3 has been suggested to be a potential therapeutic target for VEGFR2-mediated angiogenesis, it is crucial to define the possible Gal3-mediated VEGFR2 signal transduction mechanism to aid the development of efficacious therapeutic strategies.</p>
引用
收藏
页数:8
相关论文
共 30 条
[1]   Nonresponders to Ranibizumab Anti-VEGF Treatment Are Actually Short-term Responders: A Prospective Spectral-Domain OCT Study [J].
Bontzos, Georgios ;
Bagheri, Saghar ;
Ioanidi, Larissa ;
Kim, Ivana ;
Datseris, Ioannis ;
Gragoudas, Evangelos ;
Kabanarou, Stamatina ;
Miller, Joan ;
Tsilimbaris, Miltiadis ;
Vavvas, Demetrios G. .
OPHTHALMOLOGY RETINA, 2020, 4 (12) :1138-1145
[2]  
Castronovo V, 1996, J PATHOL, V179, P43, DOI 10.1002/(SICI)1096-9896(199605)179:1<43::AID-PATH541>3.0.CO
[3]  
2-N
[4]   Increased Circulation of Galectin-3 in Cancer Induces Secretion of Metastasis-Promoting Cytokines from Blood Vascular Endothelium [J].
Chen, Chen ;
Duckworth, Carrie A. ;
Zhao, Qicheng ;
Pritchard, David Mark ;
Rhodes, Jonathan M. ;
Yu, Lu-Gang .
CLINICAL CANCER RESEARCH, 2013, 19 (07) :1693-1704
[5]   VEGFR1 and VEGFR2 Involvement in Extracellular Galectin-1-and Galectin-3-Induced Angiogenesis [J].
D'Haene, Nicky ;
Sauvage, Sebastien ;
Maris, Calliope ;
Adanja, Ivan ;
Le Mercier, Marie ;
Decaestecker, Christine ;
Baum, Linda ;
Salmon, Isabelle .
PLOS ONE, 2013, 8 (06)
[6]   N-glycosylation of fibroblast growth factor receptor 1 regulates ligand and heparan sulfate co-receptor binding [J].
Duchesne, Laurence ;
Tissot, Berangere ;
Rudd, Timothy R. ;
Dell, Anne ;
Fernig, David G. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (37) :27178-27189
[7]   ANGIOGENESIS IN CANCER, VASCULAR, RHEUMATOID AND OTHER DISEASE [J].
FOLKMAN, J .
NATURE MEDICINE, 1995, 1 (01) :27-31
[8]   Galectin-3 in angiogenesis and metastasis [J].
Funasaka, Tatsuyoshi ;
Raz, Avraham ;
Nangia-Makker, Pratima .
GLYCOBIOLOGY, 2014, 24 (10) :886-891
[9]   Glycan Dependence of Galectin-3 Self-Association Properties [J].
Halimi, Hubert ;
Rigato, Annafrancesca ;
Byrne, Deborah ;
Ferracci, Geraldine ;
Sebban-Kreuzer, Corinne ;
ElAntak, Latifa ;
Guerlesquin, Francoise .
PLOS ONE, 2014, 9 (11)
[10]   The regulation of inflammation by galectin-3 [J].
Henderson, Neil C. ;
Sethi, Tariq .
IMMUNOLOGICAL REVIEWS, 2009, 230 :160-171