A Distributed Framework for Large-scale Protein-protein Interaction Data Analysis and Prediction Using MapReduce

被引:53
作者
Hu, Lun [1 ,5 ]
Yang, Shicheng [2 ]
Luo, Xin [1 ,3 ,4 ]
Yuan, Huaqiang [1 ]
Sedraoui, Khaled [6 ,7 ]
Zhou, MengChu [8 ]
机构
[1] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan 523808, Peoples R China
[2] Wuhan Univ Technol, Sch Comp Sci & Technol, Wuhan 430070, Hubei, Peoples R China
[3] Chongqing Inst Green & Intelligent Technol, Chongqing Engn Res Ctr Big Data Applicat Smart Ci, Chongqing 400714, Peoples R China
[4] Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chinese Acad Sci, Chongqing 400714, Peoples R China
[5] Xinjiang Tech Inst Phys & Chem, Chinese Acad Sci, Urumqi 830000, Peoples R China
[6] King Abdulaziz Univ, Ctr Res Excellence Renewable Energy & Power Syst, Jeddah 21589, Saudi Arabia
[7] King Abdulaziz Univ, Dept Elect & Comp Engn, Fac Engn, Jeddah 21589, Saudi Arabia
[8] New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
基金
中国国家自然科学基金;
关键词
Distributed computing; large-scale prediction machine learning; MapReduce; protein-protein interaction (PPI); GENE ORDER; NETWORK; ALGORITHM; INFERENCE; MODEL;
D O I
10.1109/JAS.2021.1004198
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Protein-protein interactions are of great significance for human to understand the functional mechanisms of proteins. With the rapid development of high-throughput genomic technologies, massive protein-protein interaction (PPI) data have been generated, making it very difficult to analyze them efficiently. To address this problem, this paper presents a distributed framework by reimplementing one of state-of-the-art algorithms, i.e., CoFex, using MapReduce. To do so, an in-depth analysis of its limitations is conducted from the perspectives of efficiency and memory consumption when applying it for large-scale PPI data analysis and prediction. Respective solutions are then devised to overcome these limitations. In particular, we adopt a novel tree-based data structure to reduce the heavy memory consumption caused by the huge sequence information of proteins. After that, its procedure is modified by following the MapReduce framework to take the prediction task distributively. A series of extensive experiments have been conducted to evaluate the performance of our framework in terms of both efficiency and accuracy. Experimental results well demonstrate that the proposed framework can considerably improve its computational efficiency by more than two orders of magnitude while retaining the same high accuracy.
引用
收藏
页码:160 / 172
页数:13
相关论文
共 54 条
[1]   Kernel methods for predicting protein-protein interactions [J].
Ben-Hur, A ;
Noble, WS .
BIOINFORMATICS, 2005, 21 :I38-I46
[2]   Temporal Prediction of Multiapplication Consolidated Workloads in Distributed Clouds [J].
Bi, Jing ;
Yuan, Haitao ;
Zhou, Mengchu .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2019, 16 (04) :1763-1773
[3]   SGW-SCN: An integrated machine learning approach for workload forecasting in geo-distributed cloud data centers [J].
Bi, Jing ;
Yuan, Haitao ;
Zhang, Libo ;
Zhang, Jia .
INFORMATION SCIENCES, 2019, 481 :57-68
[4]   Neural-Network-Based Nonlinear Model Predictive Tracking Control of a Pneumatic Muscle Actuator-Driven Exoskeleton [J].
Cao, Yu ;
Huang, Jian .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (06) :1478-1488
[5]  
Chen Jianguo, 2018, IEEE/ACM Trans Comput Biol Bioinform, DOI 10.1109/TCBB.2018.2868088
[6]   Prediction of protein-protein interactions using random decision forest framework [J].
Chen, XW ;
Liu, M .
BIOINFORMATICS, 2005, 21 (24) :4394-4400
[7]   Protein-protein interaction network prediction using stochastic learning automata induced differential evolution [J].
Chowdhury, Archana ;
Rakshit, Pratyusha ;
Konar, Amit .
APPLIED SOFT COMPUTING, 2016, 49 :699-724
[8]   Conservation of gene order: a fingerprint of proteins that physically interact [J].
Dandekar, T ;
Snel, B ;
Huynen, M ;
Bork, P .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (09) :324-328
[9]   Inferring domain-domain interactions from protein-protein interactions [J].
Deng, MH ;
Mehta, S ;
Sun, FZ ;
Chen, T .
GENOME RESEARCH, 2002, 12 (10) :1540-1548
[10]   Protein interaction maps for complete genomes based on gene fusion events [J].
Enright, AJ ;
Iliopoulos, I ;
Kyrpides, NC ;
Ouzounis, CA .
NATURE, 1999, 402 (6757) :86-90