Early deglacial Atlantic overturning decline and its role in atmospheric CO2 rise inferred from carbon isotopes (δ13C)

被引:76
作者
Schmittner, A. [1 ]
Lund, D. C. [2 ]
机构
[1] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA
[2] Univ Connecticut, Dept Marine Sci, Storrs, CT USA
基金
美国国家科学基金会;
关键词
NORTH-ATLANTIC; SOUTHERN-HEMISPHERE; CLIMATE-CHANGE; VEGETATION DYNAMICS; LAST DEGLACIATION; VENTILATION AGE; SCALE CHANGES; ICE CORE; OCEAN; CIRCULATION;
D O I
10.5194/cp-11-135-2015
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The reason for the initial rise in atmospheric CO2 during the last deglaciation remains unknown. Most recent hypotheses invoke Southern Hemisphere processes such as shifts in midlatitude westerly winds. Coeval changes in the Atlantic meridional overturning circulation (AMOC) are poorly quantified, and their relation to the CO2 increase is not understood. Here we compare simulations from a global, coupled climate-biogeochemistry model that includes a detailed representation of stable carbon isotopes (delta C-13) with a synthesis of high-resolution delta C-13 reconstructions from deep-sea sediments and ice core data. In response to a prolonged AMOC shutdown initialized from a preindustrial state, modeled delta C-13 of dissolved inorganic carbon (delta C-13(DIC)) decreases in most of the surface ocean and the subsurface Atlantic, with largest amplitudes (more than 1.5 %) in the intermediate-depth North Atlantic. It increases in the intermediate and abyssal South Atlantic, as well as in the subsurface Southern, Indian, and Pacific oceans. The modeled pattern is similar and highly correlated with the available foraminiferal delta C-13 reconstructions spanning from the late Last Glacial Maximum (LGM, similar to 19.5-18.5 ka BP) to the late Heinrich stadial event 1 (HS1, similar to 16.5-15.5 ka BP), but the model overestimates delta C-13(DIC) reductions in the North Atlantic. Possible reasons for the model-sediment-data differences are discussed. Changes in remineralized delta C-13(DIC) dominate the total delta C-13(DIC) variations in the model but preformed contributions are not negligible. Simulated changes in atmospheric CO2 and its isotopic composition (delta C-13(CO2)) agree well with ice core data. Modeled effects of AMOC-induced wind changes on the carbon and isotope cycles are small, suggesting that Southern Hemisphere westerly wind effects may have been less important for the global carbon cycle response during HS1 than previously thought. Our results indicate that during the early deglaciation the AMOC decreased for several thousand years. We propose that the observed early deglacial rise in atmospheric CO2 and the decrease in delta C-13(CO2) may have been dominated by an AMOC-induced decline of the ocean's biologically sequestered carbon storage.
引用
收藏
页码:135 / 152
页数:18
相关论文
共 97 条
[1]  
Anderson R., 2013, 11 INT C PAL SITG SP
[2]   Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2 [J].
Anderson, R. F. ;
Ali, S. ;
Bradtmiller, L. I. ;
Nielsen, S. H. H. ;
Fleisher, M. Q. ;
Anderson, B. E. ;
Burckle, L. H. .
SCIENCE, 2009, 323 (5920) :1443-1448
[3]   One-to-one coupling of glacial climate variability in Greenland and Antarctica [J].
Barbante, C. ;
Barnola, J. -M. ;
Becagli, S. ;
Beer, J. ;
Bigler, M. ;
Boutron, C. ;
Blunier, T. ;
Castellano, E. ;
Cattani, O. ;
Chappellaz, J. ;
Dahl-Jensen, D. ;
Debret, M. ;
Delmonte, B. ;
Dick, D. ;
Falourd, S. ;
Faria, S. ;
Federer, U. ;
Fischer, H. ;
Freitag, J. ;
Frenzel, A. ;
Fritzsche, D. ;
Fundel, F. ;
Gabrielli, P. ;
Gaspari, V. ;
Gersonde, R. ;
Graf, W. ;
Grigoriev, D. ;
Hamann, I. ;
Hansson, M. ;
Hoffmann, G. ;
Hutterli, M. A. ;
Huybrechts, P. ;
Isaksson, E. ;
Johnsen, S. ;
Jouzel, J. ;
Kaczmarska, M. ;
Karlin, T. ;
Kaufmann, P. ;
Kipfstuhl, S. ;
Kohno, M. ;
Lambert, F. ;
Lambrecht, Anja ;
Lambrecht, Astrid ;
Landais, A. ;
Lawer, G. ;
Leuenberger, M. ;
Littot, G. ;
Loulergue, L. ;
Luethi, D. ;
Maggi, V. .
NATURE, 2006, 444 (7116) :195-198
[4]   Hydrological impact of Heinrich events in the subtropical northeast Atlantic [J].
Bard, E ;
Rostek, F ;
Turon, JL ;
Gendreau, S .
SCIENCE, 2000, 289 (5483) :1321-1324
[5]   Hydrographic changes in the eastern subpolar North Atlantic during the last deglaciation [J].
Benway, Heather M. ;
McManus, Jerry F. ;
Oppo, Delia W. ;
Cullen, James L. .
QUATERNARY SCIENCE REVIEWS, 2010, 29 (23-24) :3336-3345
[6]   Asynchrony of Antarctic and Greenland climate change during the last glacial period [J].
Blunier, T ;
Chappellaz, J ;
Schwander, J ;
Dallenbach, A ;
Stauffer, B ;
Stocker, TF ;
Raynaud, D ;
Jouzel, J ;
Clausen, HB ;
Hammer, CU ;
Johnsen, SJ .
NATURE, 1998, 394 (6695) :739-743
[7]   DEEP CIRCULATION OF THE NORTH-ATLANTIC OVER THE LAST 200,000 YEARS - GEOCHEMICAL EVIDENCE [J].
BOYLE, EA ;
KEIGWIN, LD .
SCIENCE, 1982, 218 (4574) :784-787
[8]   Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation [J].
Bozbiyik, A. ;
Steinacher, M. ;
Joos, F. ;
Stocker, T. F. ;
Menviel, L. .
CLIMATE OF THE PAST, 2011, 7 (01) :319-338
[9]   DOES THE OCEAN-ATMOSPHERE SYSTEM HAVE MORE THAN ONE STABLE MODE OF OPERATION [J].
BROECKER, WS ;
PETEET, DM ;
RIND, D .
NATURE, 1985, 315 (6014) :21-26
[10]   Climate connections between the hemisphere revealed by deep sea sediment core ice core correlations [J].
Charles, CD ;
LynchStieglitz, J ;
Ninnemann, US ;
Fairbanks, RG .
EARTH AND PLANETARY SCIENCE LETTERS, 1996, 142 (1-2) :19-27