Observer Design for Positive Uncertain Discrete-time Lipschitz Systems

被引:0
|
作者
Krokavec, D. [1 ]
Filasova, A. [1 ]
机构
[1] Tech Univ Kosice, Fac Elect Engn & Informat, Dept Cybernet & Artificial Intelligence, Kosice, Slovakia
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 14期
关键词
uncertain systems; positive systems; Lipschitz continuity; diagonal stabilization; quadratic stability; linear matrix inequalities; STABILIZATION; STABILITY;
D O I
10.1016/j.ifacol.2021.10.338
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For positive uncertain discrete-time Lipschitz systems this paper proposes a way to reflect matched uncertainties, structural system parameter constraints, positiveness and Lipschitz continuity in solving the problem of the state observer quadratic stability. The design conditions are proposed in the set of linear matrix inequalities to guarantee the observer strict positiveness, system parameter constraint representation and estimation error bounding in terms of achieved quadratic stability and nonnegative feedback gain matrix. It follows from the results obtained that the impact of nonnegative system matrix structures can be reflected in uncertainty matching problems. A numerical example is included to assess the feasibility of the technique and its applicability. Copyright (C) 2021 The Authors.
引用
收藏
页码:114 / 119
页数:6
相关论文
共 50 条
  • [21] Sliding Mode Observer Design for Discrete-time Nonlinear Uncertain Systems via Sliding Mode Prediction
    Xiao, Lingfei
    Su, Hongye
    2008 IEEE INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING WORKSHOP PROCEEDINGS, VOLS 1 AND 2, 2008, : 143 - +
  • [22] Observer-Based Control of Discrete-Time LPV Systems With Uncertain Parameters
    Heemels, W. P. Maurice H.
    Daafouz, Jamal
    Millerioux, Gilles
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (09) : 2130 - 2135
  • [23] Dissipative interval observer design for discrete-time nonlinear systems
    Aviles, Jesus D.
    Moreno, Jaime A.
    ASIAN JOURNAL OF CONTROL, 2020, 22 (04) : 1422 - 1436
  • [24] An SOS-Based Observer Design for Discrete-Time Polynomial Fuzzy Systems
    Wang, Yingying
    Zhang, Huaguang
    Zhang, Jianyu
    Wang, Yingchun
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2015, 17 (01) : 94 - 104
  • [25] Observer Design for Discrete-Time Nonlinear Systems Using the Stability Radii Theory
    Aviles, Jesus D.
    Moreno, Jaime A.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (10) : 1959 - 1963
  • [26] Observer-Based Output Feedback Robust Control of Uncertain Discrete-time Switched Systems
    Li, Jiao
    Xu, Yongchun
    Zhang, Feng
    Wang, Weiwei
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3414 - 3418
  • [27] H∞ dynamic observer design for linear discrete-time systems
    Gao, Nao
    Darouach, Mohamed
    Alma, Marouane
    IFAC PAPERSONLINE, 2017, 50 (01): : 2756 - 2761
  • [28] Robust switching control design for uncertain discrete-time switched affine systems
    Sanchez, Carolina Albea
    Ventosa-Cutillas, Antonio
    Seuret, Alexandre
    Gordillo, Francisco
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (17) : 7089 - 7102
  • [29] H∞ norm principle in residual filter design for discrete-time linear positive systems
    Krokavec, Dusan
    Filasova, Anna
    EUROPEAN JOURNAL OF CONTROL, 2019, 45 : 17 - 29
  • [30] Dissipative Approach in Control Design for Linear Discrete-time Positive Systems
    Krokavec, Dusan
    Filasova, Anna
    2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 173 - 178