Estimating intermittency exponent in neutrally stratified atmospheric surface layer flows:: A robust framework based on magnitude cumulant and surrogate analyses

被引:29
作者
Basu, Sukanta [1 ]
Foufoula-Georgiou, Efi
Lashermes, Bruno
Arneodo, Alain
机构
[1] Texas Tech Univ, Dept Geosci, Lubbock, TX 79409 USA
[2] Univ Minnesota, St Anthony Falls Lab, Minneapolis, MN 55414 USA
[3] CNRS, Ecole Normale Super Lyon, Phys Lab, F-69364 Lyon 07, France
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
D O I
10.1063/1.2786001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study proposes a novel framework based on magnitude cumulant and surrogate analyses to reliably detect the presence of intermittency and estimate the intermittency coefficient from short-length coarse-resolution turbulent time series. Intermittency coefficients estimated from a large number of neutrally stratified atmospheric surface layer turbulent series from various field campaigns are shown to remarkably concur with well-known laboratory experimental results. In addition, surrogate-based hypothesis testing significantly reduces the likelihood of detecting a spurious nonzero intermittency coefficient from nonintermittent series. The discriminatory power of the proposed framework is promising for addressing the unresolved question of how atmospheric stability affects the intermittency properties of boundary layer turbulence. (c) 2007 American Institute of Physics.
引用
收藏
页数:11
相关论文
共 47 条
[11]  
Bohr T., 1998, DYNAMICAL SYSTEMS AP, P350
[12]   Multifractal subgrid-scale modeling for large-eddy simulation.: I.: Model development and a priori testing -: art. no. 075111 [J].
Burton, GC ;
Dahm, WJA .
PHYSICS OF FLUIDS, 2005, 17 (07) :1-16
[13]   ATMOSPHERIC ESTIMATES OF POWER-LAW EXPONENT-MU AND EXPONENT-MU-THETA [J].
CHAMBERS, AJ ;
ANTONIA, RA .
BOUNDARY-LAYER METEOROLOGY, 1984, 28 (3-4) :343-352
[14]   Unified multifractal description of velocity increments statistics in turbulence:: Intermittency and skewness [J].
Chevillard, L. ;
Castaing, B. ;
Leveque, E. ;
Arneodo, A. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 218 (01) :77-82
[15]   Intermittency exponent of the turbulent energy cascade [J].
Cleve, Jochen ;
Greiner, Martin ;
Pearson, Bruce R. ;
Sreenivasan, Katepalli R. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 69 (6 2) :066316-1
[16]   Intermittency of 1D velocity spatial profiles in turbulence:: a magnitude cumulant analysis [J].
Delour, J ;
Muzy, JF ;
Arnéodo, A .
EUROPEAN PHYSICAL JOURNAL B, 2001, 23 (02) :243-248
[17]   SIMPLE DYNAMICAL MODEL OF INTERMITTENT FULLY DEVELOPED TURBULENCE [J].
FRISCH, U ;
SULEM, PL ;
NELKIN, M .
JOURNAL OF FLUID MECHANICS, 1978, 87 (AUG) :719-736
[18]  
Frisch U., 1995, TURBULENCE LEGACY AN, P296
[19]  
Kantz H., 1997, NONLINEAR TIME SERIE, P320
[20]   Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow [J].
Kunkel, GJ ;
Marusic, I .
JOURNAL OF FLUID MECHANICS, 2006, 548 (375-402) :375-402