Informationally symmetrical Bell state preparation and measurement

被引:31
作者
Kim, Yong-Su [1 ,2 ]
Pramanik, Tanumoy [1 ]
Cho, Young-Wook [1 ]
Yang, Ming [3 ]
Han, Sang-Wook [1 ]
Lee, Sang-Yun [1 ]
Kang, Min-Sung [1 ]
Moon, Sung [1 ,2 ]
机构
[1] KIST, Ctr Quantum Informat, Seoul 02792, South Korea
[2] Korea Univ Sci & Technol, KIST Sch, Div Nano & Informat Technol, Seoul 02792, South Korea
[3] Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Anhui, Peoples R China
来源
OPTICS EXPRESS | 2018年 / 26卷 / 22期
基金
中国国家自然科学基金;
关键词
2-PHOTON INTERFERENCE; QUANTUM INTERFERENCE; ENTANGLEMENT; PHOTONS; TELEPORTATION; COMPUTATION; SHARE;
D O I
10.1364/OE.26.029539
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Bell state measurement (BSM) plays crucial roles in photonic quantum information processing. The standard linear optical BSM is based on Hong-Ou-Mandel interference where two photons meet and interfere at a beamsplitter (BS). However, a generalized two-photon interference is not based on photon-photon interaction, but interference between two-photon probability amplitudes. Therefore, it might be possible to implement BSM without interfering photons at a BS. Here, we investigate a linear optical BSM scheme which does not require two photon overlapping at a BS. By unleashing the two photon coexistence condition, it can be symmetrically divided into two parties. The symmetrically dividable property suggests an informational symmetrical BSM between remote parties without a third party. We also present that our BSM scheme can be used for Bell state preparation between remote parties without a third party. Since our BSM scheme can be easily extended to multiple photons, it can be useful for various quantum communication applications. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:29539 / 29549
页数:11
相关论文
共 40 条
[1]   Maximum-likelihood estimation of the density matrix [J].
Banaszek, K ;
D'Ariano, GM ;
Paris, MGA ;
Sacchi, MF .
PHYSICAL REVIEW A, 2000, 61 (01) :4
[2]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[3]  
Blasiak P., 2018, ARXIV180705546
[4]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579
[5]   Side-Channel-Free Quantum Key Distribution [J].
Braunstein, Samuel L. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2012, 108 (13)
[6]   Plug-and-play measurement-device-independent quantum key distribution [J].
Choi, Yujun ;
Kwon, Osung ;
Woo, Minki ;
Oh, Kyunghwan ;
Han, Sang-Wook ;
Kim, Yong-Su ;
Moon, Sung .
PHYSICAL REVIEW A, 2016, 93 (03)
[7]   How to share a quantum secret [J].
Cleve, R ;
Gottesman, D ;
Lo, HK .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :648-651
[8]   Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits [J].
Ferreira da Silva, T. ;
Vitoreti, D. ;
Xavier, G. B. ;
do Amaral, G. C. ;
Temporao, G. P. ;
von der Weid, J. P. .
PHYSICAL REVIEW A, 2013, 88 (05)
[9]   Long-Distance Measurement-Device-Independent Multiparty Quantum Communication [J].
Fu, Yao ;
Yin, Hua-Lei ;
Chen, Teng-Yun ;
Chen, Zeng-Bing .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[10]   Teleportation-based realization of an optical quantum two-qubit entangling gate [J].
Gao, Wei-Bo ;
Goebel, Alexander M. ;
Lu, Chao-Yang ;
Dai, Han-Ning ;
Wagenknecht, Claudia ;
Zhang, Qiang ;
Zhao, Bo ;
Peng, Cheng-Zhi ;
Chen, Zeng-Bing ;
Chen, Yu-Ao ;
Pan, Jian-Wei .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (49) :20869-20874