Solitons and other solutions for higher-order NLS equation and quantum ZK equation using the extended simplest equation method

被引:39
|
作者
Zayed, Elsayed M. E. [1 ]
Shohib, Reham M. A. [1 ]
Al-Nowehy, Abdul-Ghani [2 ]
机构
[1] Zagazig Univ, Fac Sci, Dept Math, Zagazig, Egypt
[2] Taiz Univ, Fac Educ & Sci, Dept Math, Taizi, Yemen
关键词
Extended simplest equation method; Higher-order NLS equation with derivative non-Kerr nonlinear terms; Quantum Zakharov-Kuznetsov equation; Solitons and other solutions; NONLINEAR SCHRODINGER-EQUATION; SOLITARY WAVE SOLUTIONS; POWER-LAW NONLINEARITY; EXP-FUNCTION METHOD; SINE-COSINE METHOD; EVOLUTION-EQUATIONS; PERIODIC-SOLUTIONS; RICCATI EQUATION; MAPPING METHOD; FORMS;
D O I
10.1016/j.camwa.2018.08.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we apply the extended simplest equation method for constructing the solitons and other solutions of two nonlinear partial differential equations (PDEs), namely the higher-order nonlinear Schrodinger (NLS) equation with derivative non-Kerr nonlinear terms and the nonlinear quantum Zakharov-Kuznetsov (QZK) equation which play an important role in mathematical physics. The first equation describes pulse of the propagation beyond ultrashort range in optical communication systems, while the second equation arises in quantum magneto plasma. Comparison of our new results in this article with the well-known results is given. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2286 / 2303
页数:18
相关论文
共 50 条
  • [41] DYNAMICS OF A HIGHER-ORDER RATIONAL DIFFERENCE EQUATION
    Wang, Qi
    Zhang, Qinqin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (02): : 770 - 787
  • [42] The characteristics of a higher-order rational difference equation
    Dehghan, Mehdi
    Mazrooei-Sebdani, Reza
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) : 521 - 528
  • [43] Solitons in magneto-optic waveguides for nonlinear Schrodinger's equation with parabolic-nonlocal law of refractive index by using extended simplest equation method
    Ahmed, Hamdy M.
    Darwish, Adel
    Shehab, Mohammed F.
    Arnous, Ahmed H.
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (08)
  • [44] Solitons and periodic solutions for the fifth-order KdV equation
    Wazwaz, Abdul-Majid
    APPLIED MATHEMATICS LETTERS, 2006, 19 (11) : 1162 - 1167
  • [45] Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrodinger equation
    Khodadad, F. Samsami
    Mirhosseini-Alizamini, S. M.
    Gunay, B.
    Akinyemi, Lanre
    Rezazadeh, Hadi
    Inc, Mustafa
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (12)
  • [46] Some exact solutions to the inhomogeneous higher-order nonlinear Schrdinger equation by a direct method
    张焕萍
    李彪
    陈勇
    Chinese Physics B, 2010, 19 (06) : 36 - 42
  • [47] Solitons and other solutions of the nonlinear fractional Zoomeron equation
    Tala-Tebue, E.
    Djoufack, Z. I.
    Djimeli-Tsajio, A.
    Kenfack-Jiotsa, A.
    CHINESE JOURNAL OF PHYSICS, 2018, 56 (03) : 1232 - 1246
  • [48] SOLITONS AND OTHER SOLUTIONS TO GARDNER EQUATION BY SIMILARITY REDUCTION
    Guo, Y. C.
    Biswas, A.
    ROMANIAN JOURNAL OF PHYSICS, 2015, 60 (7-8): : 961 - 970
  • [49] Solitons in magneto-optic waveguides for nonlinear Schrödinger’s equation with parabolic-nonlocal law of refractive index by using extended simplest equation method
    Hamdy M. Ahmed
    Adel Darwish
    Mohammed F. Shehab
    Ahmed H. Arnous
    Optical and Quantum Electronics, 2022, 54
  • [50] Solitons and other solutions to the resonant nonlinear Schrodinger equation with both spatio-temporal and inter-modal dispersions using different techniques
    Zayed, Elsayed M. E.
    Shohib, Reham M. A.
    OPTIK, 2018, 158 : 970 - 984