Solitons and other solutions for higher-order NLS equation and quantum ZK equation using the extended simplest equation method

被引:39
|
作者
Zayed, Elsayed M. E. [1 ]
Shohib, Reham M. A. [1 ]
Al-Nowehy, Abdul-Ghani [2 ]
机构
[1] Zagazig Univ, Fac Sci, Dept Math, Zagazig, Egypt
[2] Taiz Univ, Fac Educ & Sci, Dept Math, Taizi, Yemen
关键词
Extended simplest equation method; Higher-order NLS equation with derivative non-Kerr nonlinear terms; Quantum Zakharov-Kuznetsov equation; Solitons and other solutions; NONLINEAR SCHRODINGER-EQUATION; SOLITARY WAVE SOLUTIONS; POWER-LAW NONLINEARITY; EXP-FUNCTION METHOD; SINE-COSINE METHOD; EVOLUTION-EQUATIONS; PERIODIC-SOLUTIONS; RICCATI EQUATION; MAPPING METHOD; FORMS;
D O I
10.1016/j.camwa.2018.08.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we apply the extended simplest equation method for constructing the solitons and other solutions of two nonlinear partial differential equations (PDEs), namely the higher-order nonlinear Schrodinger (NLS) equation with derivative non-Kerr nonlinear terms and the nonlinear quantum Zakharov-Kuznetsov (QZK) equation which play an important role in mathematical physics. The first equation describes pulse of the propagation beyond ultrashort range in optical communication systems, while the second equation arises in quantum magneto plasma. Comparison of our new results in this article with the well-known results is given. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2286 / 2303
页数:18
相关论文
共 50 条
  • [32] Stable Optical Solitons for the Higher-Order Non-Kerr NLSE via the Modified Simple Equation Method
    Rasheed, Noha M.
    Al-Amr, Mohammed O.
    Az-Zo'bi, Emad A.
    Tashtoush, Mohammad A.
    Akinyemi, Lanre
    MATHEMATICS, 2021, 9 (16)
  • [33] Ground states for the higher-order dispersion managed NLS equation in the absence of average dispersion
    Kunze, M
    Moeser, J
    Zharnitsky, V
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 209 (01) : 77 - 100
  • [34] Systematic generation of higher-order solitons and breathers of the Hirota equation on different backgrounds
    Nikolic, Stanko N.
    Aleksic, Najdan B.
    Ashour, Omar A.
    Belic, Milivoj R.
    Chin, Siu A.
    NONLINEAR DYNAMICS, 2017, 89 (03) : 1637 - 1649
  • [35] Some exact solutions to the inhomogeneous higher-order nonlinear Schrodinger equation by a direct method
    Zhang Huan-Ping
    Li Biao
    Chen Yong
    CHINESE PHYSICS B, 2010, 19 (06)
  • [36] New exact solutions for the KdV equation with higher order nonlinearity by using the variational method
    Seadawy, A. R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (10) : 3741 - 3755
  • [38] DARBOUX TRANSFORMATION AND HIGHER-ORDER SOLUTIONS OF THE SASA-SATSUMA EQUATION
    Guo, Lijuan
    Cheng, Yi
    Mihalache, Dumitru
    He, Jingsong
    ROMANIAN JOURNAL OF PHYSICS, 2019, 64 (1-2):
  • [39] Higher-order rogue wave solutions of the Kundu-Eckhaus equation
    Wang, Xin
    Yang, Bo
    Chen, Yong
    Yang, Yunqing
    PHYSICA SCRIPTA, 2014, 89 (09)
  • [40] Collapse for the higher-order nonlinear Schrodinger equation
    Achilleos, V.
    Diamantidis, S.
    Frantzeskakis, D. J.
    Horikis, T. P.
    Karachalios, N. I.
    Kevrekidis, P. G.
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 316 : 57 - 68