Highly Durable and Thermally Conductive Shell-Coated Phase Change Capsule as a Thermal Energy Battery

被引:16
作者
Do, Taegu [2 ]
Ko, Young Gun [1 ]
Jung, Youngkyun [2 ]
Choi, Ung Su [2 ]
机构
[1] Korea Atom Energy Res Inst, Environm Radioact Assessment Team, Daejeon 34057, South Korea
[2] Korea Inst Sci & Technol, Natl Agenda Res Div, Seoul 02792, South Korea
关键词
phase-change material; microencapsulation; phase-change capsule; thermal hysteresis; phase-change slurry; heat transfer fluid;
D O I
10.1021/acsami.9b18627
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Robust and thermally conductive phase-change capsules (PCCs) can be effectively used as dispersoids for heat transfer fluids (HTFs) to utilize waste heat. Here, we demonstrate PCCs encapsulated with a cross-linked poly(2-hydroxyethyl methacrylate) shell that showed high durability and low thermal hysteresis for effective heat uptake and release. The circulation system was manufactured by mimicking the 4th Generation District Heating (4GDH) system to confirm the heat delivery efficiencies of PCC-dispersed slurries (PCSs) as the HTFs. The enthalpy change of water after it received heat from the PCS improved by up to 41.1% on increasing the amount of PCCs in the PCS. Furthermore, a high PCC recovery of 92 wt % was achieved after 1500 cycles, which accompanied a phase transition. The PCC developed by us can thus enable effective storage/delivery of waste heat-driven energy for zero-energy buildings and a 4GDH system, as well as thermal management of electronics.
引用
收藏
页码:5759 / 5766
页数:8
相关论文
共 49 条
  • [1] Zhou Y., Xiong S., Zhang X., Volz S., Hu M., Thermal Transport Crossover from Crystalline to Partial-Crystalline Partial-Liquid State, Nat. Commun., 9, (2018)
  • [2] Han G.G.D., Li H., Grossman J.C., Optically-Controlled Long-Term Storage and Release of Thermal Energy in Phase-Change Materials, Nat. Commun., 8, (2017)
  • [3] Hyun D.C., Levinson N.S., Jeong U., Xia Y., Emerging Applications of Phase-Change Materials (PCMs): Teaching an Old Dog New Tricks, Angew. Chem., Int. Ed., 53, pp. 3780-3795, (2014)
  • [4] Inagaki T., Ishida T., Computational Design of Non-Natural Sugar Alcohols to Increase Thermal Storage Density: Beyond Existing Organic Phase Change Materials, J. Am. Chem. Soc., 138, pp. 11810-11819, (2016)
  • [5] Liu C., Li F., Ma L.-P., Cheng H.-M., Advanced Materials for Energy Storage, Adv. Mater., 22, pp. E28-E62, (2010)
  • [6] Wang Z.Y., Tong Z., Ye Q.X., Hu H., Nie X., Yan C., Shang W., Song C.Y., Wu J.B., Wang J., Bao H., Tao P., Deng T., Dynamic Tuning of Optical Absorbers for Accelerated Solar-Thermal Energy Storage, Nat. Commun., 8, (2017)
  • [7] Wang Y., Tang B., Zhang S., Single-Walled Carbon Nanotube/Phase Change Material Composites: Sunlight-Driven, Reversible, Form-Stable Phase Transitions for Solar Thermal Energy Storage, Adv. Funct. Mater., 23, pp. 4354-4360, (2013)
  • [8] Deng Y., Li J., Qian T., Guan W., Li Y., Yin X., Thermal Conductivity Enhancement of Polyethylene Glycol/Expanded Vermiculite Shape-Stabilized Composite Phase Change Materials with Silver Nanowire for Thermal Energy Storage, Chem. Eng. J., 295, pp. 427-435, (2016)
  • [9] Ji H., Sellan D.P., Pettes M.T., Kong X., Ji J., Shi L., Ruoff R.S., Enhanced Thermal Conductivity of Phase Change Materials with Ultrathin-Graphite Foams for Thermal Energy Storage, Energy Environ. Sci., 7, pp. 1185-1192, (2014)
  • [10] Cottrill A.L., Liu A.T., Kunai Y., Koman V.B., Kaplan A., Mahajan S.G., Liu P.W., Toland A.R., Strano M.S., Ultra-High Thermal Effusivity Materials for Resonant Ambient Thermal Energy Harvesting, Nat. Commun., 9, (2018)