Two-type annihilating systems on the complete and star graph

被引:2
作者
Cristali, Irina [1 ]
Jiang, Yufeng [2 ]
Junge, Matthew [3 ]
Kassem, Remy [4 ]
Sivakoff, David [5 ]
York, Grayson [6 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Univ Washington, Seattle, WA 98195 USA
[3] Baruch Coll, Dept Math, New York, NY 10010 USA
[4] Columbia Univ, New York, NY 10027 USA
[5] Ohio State Univ, Columbus, OH 43210 USA
[6] Duke Univ, Durham, NC 27706 USA
基金
美国国家科学基金会;
关键词
COALESCING RANDOM-WALKS; MULTIPLE RANDOM-WALKS; ASYMPTOTIC-BEHAVIOR; RECURRENCE; DENSITIES; PARKING;
D O I
10.1016/j.spa.2021.05.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Red and blue particles are placed in equal proportion throughout either the complete or star graph and iteratively sampled to take simple random walk steps. Mutual annihilation occurs when particles with different colors meet. We compare the time it takes to extinguish every particle to the analogous time in the (simple to analyze) one-type setting. Additionally, we study the effect of asymmetric particle speeds. (C) 2021 ElsevierB.V. All rights reserved.
引用
收藏
页码:321 / 342
页数:22
相关论文
共 29 条
[1]   SITE RECURRENCE FOR ANNIHILATING RANDOM-WALKS ON ZD [J].
ARRATIA, R .
ANNALS OF PROBABILITY, 1983, 11 (03) :706-713
[3]  
Bahl Riti, 2021, DIFFUSION LTD ANNIHI DIFFUSION LTD ANNIHI
[4]   ASYMPTOTIC-BEHAVIOR OF DENSITIES IN DIFFUSION DOMINATED 2-PARTICLE REACTIONS [J].
BRAMSON, M ;
LEBOWITZ, JL .
PHYSICA A, 1990, 168 (01) :88-94
[5]   ASYMPTOTICS FOR INTERACTING PARTICLE-SYSTEMS ON ZD [J].
BRAMSON, M ;
GRIFFEATH, D .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 53 (02) :183-196
[6]   ASYMPTOTIC-BEHAVIOR OF DENSITIES FOR 2-PARTICLE ANNIHILATING RANDOM-WALKS [J].
BRAMSON, M ;
LEBOWITZ, JL .
JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (1-2) :297-372
[7]   Spatial structure in low dimensions for diffusion limited two-particle reactions [J].
Bramson, M ;
Lebowitz, JL .
ANNALS OF APPLIED PROBABILITY, 2001, 11 (01) :121-181
[8]   ASYMPTOTIC-BEHAVIOR OF DENSITIES IN DIFFUSION-DOMINATED ANNIHILATION REACTIONS [J].
BRAMSON, M ;
LEBOWITZ, JL .
PHYSICAL REVIEW LETTERS, 1988, 61 (21) :2397-2400
[9]   Recurrence and density decay for diffusion-limited annihilating systems [J].
Cabezas, M. ;
Rolla, L. T. ;
Sidoravicius, V. .
PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (3-4) :587-615
[10]   Non-equilibrium Phase Transitions: Activated Random Walks at Criticality [J].
Cabezas, M. ;
Rolla, L. T. ;
Sidoravicius, V. .
JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (06) :1112-1125