Crack Length Measurement Using Convolutional Neural Networks and Image Processing

被引:20
|
作者
Yuan, Yingtao [1 ,2 ]
Ge, Zhendong [1 ,2 ]
Su, Xin [1 ,2 ]
Guo, Xiang [1 ,2 ]
Suo, Tao [1 ,2 ]
Liu, Yan [3 ]
Yu, Qifeng [1 ,2 ,3 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China
[2] Int Res Lab Impact Dynam & Its Engn Applicat, Xian 710072, Peoples R China
[3] Shenzhen Univ, Inst Intelligent Opt Measurement & Detect, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
crack length; image processing; convolutional neural network; fatigue crack detection; PROPAGATION;
D O I
10.3390/s21175894
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Fatigue failure is a significant problem in the structural safety of engineering structures. Human inspection is the most widely used approach for fatigue failure detection, which is time consuming and subjective. Traditional vision-based methods are insufficient in distinguishing cracks from noises and detecting crack tips. In this paper, a new framework based on convolutional neural networks (CNN) and digital image processing is proposed to monitor crack propagation length. Convolutional neural networks were first applied to robustly detect the location of cracks with the interference of scratch and edges. Then, a crack tip-detection algorithm was established to accurately locate the crack tip and was used to calculate the length of the crack. The effectiveness and precision of the proposed approach were validated through conducting fatigue experiments. The results demonstrated that the proposed approach could robustly identify a fatigue crack surrounded by crack-like noises and locate the crack tip accurately. Furthermore, crack length could be measured with submillimeter accuracy.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Crack segmentation through deep convolutional neural networks and heterogeneous image fusion
    Zhou, Shanglian
    Song, Wei
    AUTOMATION IN CONSTRUCTION, 2021, 125 (125)
  • [32] Ensemble of Deep Convolutional Neural Networks for Automatic Pavement Crack Detection and Measurement
    Fan, Zhun
    Li, Chong
    Chen, Ying
    Di Mascio, Paola
    Chen, Xiaopeng
    Zhu, Guijie
    Loprencipe, Giuseppe
    COATINGS, 2020, 10 (02)
  • [33] Comparison of Image Pre-processing for Classifying Diabetic Retinopathy Using Convolutional Neural Networks
    Cordero-Martinez, Rodrigo
    Sanchez, Daniela
    Melin, Patricia
    HYBRID INTELLIGENT SYSTEMS, HIS 2021, 2022, 420 : 194 - 204
  • [34] Image Processing for Classification of Rice Varieties with Deep Convolutional Neural Networks
    Panmuang, Mathuros
    Rodmorn, Chonnikarn
    Pinitkan, Suriya
    16TH INTERNATIONAL JOINT SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND NATURAL LANGUAGE PROCESSING (ISAI-NLP 2021), 2021,
  • [35] A Blink Detection Algorithm Based on Image Processing and Convolutional Neural Networks
    Avalos, Mariel
    Binasco, Salvatore
    Kemper, Guillermo
    Salazar-Gamarra, Rodrigo
    PROCEEDINGS OF THE 7TH BRAZILIAN TECHNOLOGY SYMPOSIUM (BTSYM'21): EMERGING TRENDS IN SYSTEMS ENGINEERING MATHEMATICS AND PHYSICAL SCIENCES, VOL 2, 2022, 295 : 615 - 621
  • [36] Image Captioning using Convolutional Neural Networks and Recurrent Neural Network
    Calvin, Rachel
    Suresh, Shravya
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [37] Application of image processing and convolutional neural networks for flood image classification and semantic segmentation
    Pally, R. J.
    Samadi, S.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2022, 148
  • [38] Automated Road Crack Detection Using Deep Convolutional Neural Networks
    Mandal, Vishal
    Uong, Lan
    Adu-Gyamfi, Yaw
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 5212 - 5215
  • [39] Investigations on Plate Crack Damage Detection Using Convolutional Neural Networks
    Ma, Dongliang
    Wang, Deyu
    INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2021, 31 (02) : 220 - 229
  • [40] Measurement of the fatigue-crack using image processing techniques
    Ryu, DH
    Choi, TW
    Kim, YI
    Nahm, SH
    KES'2000: FOURTH INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED INTELLIGENT ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, VOLS 1 AND 2, PROCEEDINGS, 2000, : 121 - 124