Crack Length Measurement Using Convolutional Neural Networks and Image Processing

被引:20
作者
Yuan, Yingtao [1 ,2 ]
Ge, Zhendong [1 ,2 ]
Su, Xin [1 ,2 ]
Guo, Xiang [1 ,2 ]
Suo, Tao [1 ,2 ]
Liu, Yan [3 ]
Yu, Qifeng [1 ,2 ,3 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China
[2] Int Res Lab Impact Dynam & Its Engn Applicat, Xian 710072, Peoples R China
[3] Shenzhen Univ, Inst Intelligent Opt Measurement & Detect, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
crack length; image processing; convolutional neural network; fatigue crack detection; PROPAGATION;
D O I
10.3390/s21175894
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Fatigue failure is a significant problem in the structural safety of engineering structures. Human inspection is the most widely used approach for fatigue failure detection, which is time consuming and subjective. Traditional vision-based methods are insufficient in distinguishing cracks from noises and detecting crack tips. In this paper, a new framework based on convolutional neural networks (CNN) and digital image processing is proposed to monitor crack propagation length. Convolutional neural networks were first applied to robustly detect the location of cracks with the interference of scratch and edges. Then, a crack tip-detection algorithm was established to accurately locate the crack tip and was used to calculate the length of the crack. The effectiveness and precision of the proposed approach were validated through conducting fatigue experiments. The results demonstrated that the proposed approach could robustly identify a fatigue crack surrounded by crack-like noises and locate the crack tip accurately. Furthermore, crack length could be measured with submillimeter accuracy.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Ensemble of Deep Convolutional Neural Networks for Automatic Pavement Crack Detection and Measurement
    Fan, Zhun
    Li, Chong
    Chen, Ying
    Di Mascio, Paola
    Chen, Xiaopeng
    Zhu, Guijie
    Loprencipe, Giuseppe
    COATINGS, 2020, 10 (02)
  • [22] Application of image processing and convolutional neural networks for flood image classification and semantic segmentation
    Pally, R. J.
    Samadi, S.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2022, 148
  • [23] Crack Damage Detection of Bridge Based on Convolutional Neural Networks
    Jia Xiaoyu
    Luo Wenguang
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 3995 - 4000
  • [24] Investigations on Plate Crack Damage Detection Using Convolutional Neural Networks
    Ma, Dongliang
    Wang, Deyu
    INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2021, 31 (02) : 220 - 229
  • [25] Medical Image Analysis using Convolutional Neural Networks: A Review
    Syed Muhammad Anwar
    Muhammad Majid
    Adnan Qayyum
    Muhammad Awais
    Majdi Alnowami
    Muhammad Khurram Khan
    Journal of Medical Systems, 2018, 42
  • [26] Medical Image Analysis using Convolutional Neural Networks: A Review
    Anwar, Syed Muhammad
    Majid, Muhammad
    Qayyum, Adnan
    Awais, Muhammad
    Alnowami, Majdi
    Khan, Muhammad Khurram
    JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (11)
  • [27] Length and width of low-light, concrete hairline crack detection and measurement using image processing method
    Jayanthi N.
    Ghosh T.
    Meena R.K.
    Verma M.
    Asian Journal of Civil Engineering, 2024, 25 (3) : 2705 - 2714
  • [28] Automated Vickers hardness measurement using convolutional neural networks
    Yukimi Tanaka
    Yutaka Seino
    Koichiro Hattori
    The International Journal of Advanced Manufacturing Technology, 2020, 109 : 1345 - 1355
  • [29] Convolutional Neural Networks for image classification
    Jmour, Nadia
    Zayen, Sehla
    Abdelkrim, Afef
    2018 INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND ELECTRICAL TECHNOLOGIES (IC_ASET), 2017, : 397 - 402
  • [30] Automated Vickers hardness measurement using convolutional neural networks
    Tanaka, Yukimi
    Seino, Yutaka
    Hattori, Koichiro
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 109 (5-6) : 1345 - 1355