Synaptic algebras

被引:18
|
作者
Foulis, David J. [1 ]
机构
[1] Univ Massachusetts, Amherst, MA 01003 USA
关键词
spectral order-unit normed space; special Jordan algebra; convex effect algebra; orthomodular lattice; generalized Hermitian algebra; projections; square roots; carriers; absolute value; polar decoposition; quadratic mapping; Sasaki mapping; invertible element; regular element; simple element; spectral resolution; spectrum;
D O I
10.2478/s12175-010-0037-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A synaptic algebra is both a special Jordan algebra and a spectral order-unit normed space satisfying certain natural conditions suggested by the partially ordered Jordan algebra of bounded Hermitian operators on a Hilbert space. The adjective "synaptic", borrowed from biology, is meant to suggest that such an algebra coherently "ties together" the notions of a Jordan algebra, a spectral order-unit normed space, a convex effect algebra, and an orthomodular lattice.
引用
收藏
页码:631 / 654
页数:24
相关论文
共 50 条
  • [21] Orthomodular implication algebras
    Chajda, I
    Halas, R
    Länger, H
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (11) : 1875 - 1884
  • [22] Orthomodular Implication Algebras
    Ivan Chajda
    Radomír Halas
    Helmut Länger
    International Journal of Theoretical Physics, 2001, 40 : 1875 - 1884
  • [23] ANGLES IN C*-ALGEBRAS
    Anoussis, M.
    Katavolos, A.
    Todorov, I. G.
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (02): : 501 - 517
  • [24] On regular Lie algebras
    Zusmanovich, Pasha
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (03) : 1104 - 1119
  • [25] On varieties of basic algebras
    Ivan Chajda
    Radomír Halaš
    Soft Computing, 2015, 19 : 261 - 267
  • [26] On varieties of basic algebras
    Chajda, Ivan
    Halas, Radomir
    SOFT COMPUTING, 2015, 19 (02) : 261 - 267
  • [27] ORTHOGEOMETRIES AND AW*-ALGEBRAS
    Harding, John
    Lindenhovius, Bert
    HOUSTON JOURNAL OF MATHEMATICS, 2022, 48 (01): : 33 - 58
  • [28] Involutive operator algebras
    Blecher, David P.
    Wang, Zhenhua
    POSITIVITY, 2020, 24 (01) : 13 - 53
  • [29] ''Real'' Subalgebras of -Algebras
    Grigoryan, T. A.
    Sharafutdinov, A. Sh.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (06) : 2020 - 2026
  • [30] Regularity of group algebras
    Gorin, E. A.
    SBORNIK MATHEMATICS, 2009, 200 (7-8) : 1165 - 1179