A synaptic algebra is both a special Jordan algebra and a spectral order-unit normed space satisfying certain natural conditions suggested by the partially ordered Jordan algebra of bounded Hermitian operators on a Hilbert space. The adjective "synaptic", borrowed from biology, is meant to suggest that such an algebra coherently "ties together" the notions of a Jordan algebra, a spectral order-unit normed space, a convex effect algebra, and an orthomodular lattice.
机构:
Univ Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USAUniv Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USA
Foulis, David J.
Pulmannov, Sylvia
论文数: 0引用数: 0
h-index: 0
机构:
Slovak Acad Sci, Math Inst, Stefanikova 49, SK-81473 Bratislava, SlovakiaUniv Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USA
机构:
Univ Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USAUniv Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USA
Foulis, David J.
Jencova, Anna
论文数: 0引用数: 0
h-index: 0
机构:
Slovak Acad Sci, Math Inst, Stefanikova 49, SK-81473 Bratislava, SlovakiaUniv Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USA
Jencova, Anna
Pulmannova, Ylvia
论文数: 0引用数: 0
h-index: 0
机构:
Slovak Acad Sci, Math Inst, Stefanikova 49, SK-81473 Bratislava, SlovakiaUniv Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USA