Micromachined faraday cup array using deep reactive ion etching

被引:2
作者
Darling, RB [1 ]
Scheidemann, AA [1 ]
Bhat, KN [1 ]
Chen, TC [1 ]
机构
[1] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
来源
14TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST | 2001年
关键词
D O I
10.1109/MEMSYS.2001.906486
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A micromachined Faraday cup array (MFCA) for position sensitive ion detection has been developed using a deep reactive ion etching (DRIE) process. Linear, closely spaced arrays of 64, 128, and 256 cups have been produced with pitches of 250 mum and 150 mum. Low leakage MOS capacitors formed into DRIE trenches form effective ion collection traps with stable and electrostatically isolated capacitances. These closely spaced arrays of Faraday cups enable a new generation of compact mass spectrometers with true multi-channel detection capability. Since all of the incident ion flux is continuously intercepted by the array, no ion flux is lost as in scanning systems, and the overall sensitivity of the mass spectrometer is drastically improved by a factor approximately equal to the number of cups in the array. The MFCA is thus an ideal component for miniaturized mass spectrometers, ion beam profiling, and chemical analyzers which must work with very small sample volumes or high throughputs.
引用
收藏
页码:90 / 93
页数:2
相关论文
共 50 条
[31]   Laser desorption ionization (LDI) silicon nanopost array chips fabricated using deep UV projection lithography and deep reactive ion etching [J].
Morris, Nicholas J. ;
Anderson, Heather ;
Thibeault, Brian ;
Vertes, Akos ;
Powell, Matthew J. ;
Razunguzwa, Trust T. .
RSC ADVANCES, 2015, 5 (88) :72051-72057
[32]   Photomask patterning for slope-form deep etching using deep-reactive-ion etching and gradation exposure [J].
Yamaguchi, M. (masakiy@iwate-u.ac.jp), 1600, M Y U Scientific Publishing Division (26)
[33]   Dry etching of GaN using reactive ion beam etching and chemically assisted reactive ion beam etching [J].
Lee, JW ;
Park, HS ;
Park, YJ ;
Yoo, MC ;
Kim, TI ;
Kim, HS ;
Yeom, GY .
GALLIUM NITRIDE AND RELATED MATERIALS II, 1997, 468 :373-377
[34]   Formation of silicon nanograss and microstructures on silicon using deep reactive ion etching [J].
Mehran, M. ;
Sanaee, Z. ;
Mohajerzadeh, S. .
MICRO & NANO LETTERS, 2010, 5 (06) :374-378
[35]   Effect of Process Parameters on TSV Formation Using Deep Reactive Ion Etching [J].
Kim, Kwang-Seok ;
Lee, Young-Chul ;
Ahn, Jee-Hyuk ;
Song, Jun Yeob ;
Yoo, Choong D. ;
Jung, Seung-Boo .
KOREAN JOURNAL OF METALS AND MATERIALS, 2010, 48 (11) :1028-1034
[36]   Developing Terahertz Filters using the Deep Reactive Ion Etching (DRIE) Process [J].
Hao, Zhang-Cheng ;
Hong, Wei .
2016 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP), 2016,
[37]   Nanograss and nanostructure formation on silicon using a modified deep reactive ion etching [J].
Mehran, M. ;
Mohajerzadeh, S. ;
Sanaee, Z. ;
Abdi, Y. .
APPLIED PHYSICS LETTERS, 2010, 96 (20)
[38]   A method for tapered deep reactive ion etching using a modified Bosch process [J].
Roxhed, Niclas ;
Griss, Patrick ;
Stemme, Goran .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (05) :1087-1092
[39]   Fabrication of Deep Trenches in Silicon Wafer using Deep Reactive Ion Etching with Aluminum Mask [J].
Ganji, Bahram Azizollah ;
Majlis, Burhanuddin Yeop .
SAINS MALAYSIANA, 2009, 38 (06) :889-894
[40]   Fabrication of Multiheight Microneedle Electrode Array Using Combination Process of Reactive Ion Etching [J].
Nam, Kyeong-Taek ;
Kim, Yong-Kweon ;
Lee, Seung-Ki ;
Park, Jae-Hyoung .
IEEE SENSORS JOURNAL, 2024, 24 (21) :34134-34144