Nonlinear nonlocal Cauchy problems in Banach spaces

被引:62
作者
Aizicovici, S [1 ]
Lee, H [1 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
nonlocal Cauchy problem; m-accretive operator; compact semigroup;
D O I
10.1016/j.aml.2004.01.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the existence of integral solutions for an abstract nonlinear Cauchy problem with nonlocal initial conditions. The approach relies on the use of the theory of nonlinear semigroups and Schauder's fixed-point theorem. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:401 / 407
页数:7
相关论文
共 11 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   Existence results for a class of abstract nonlocal Cauchy problems [J].
Aizicovici, S ;
McKibben, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (05) :649-668
[3]  
Aizicovici S., 1997, J APPL MATH STOCHAST, V10, P145, DOI DOI 10.1155/S104895339700018X
[4]  
ARBU V, 1976, NONLINEAR SEMIGROUPS
[5]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505
[6]  
Byszewski L., 1991, Applicable Analysis, V40, P11
[7]  
LIANG J, 2004, NONLINEAR ANAL, V57, P183, DOI DOI 10.1016/J.NA.2004.02.007
[8]   A remark on the mild solutions of non-local evolution equations [J].
Liu, JH .
SEMIGROUP FORUM, 2003, 66 (01) :63-67
[9]   Global existence for semilinear evolution equations with nonlocal conditions [J].
Ntouyas, SK ;
Tsamatos, PC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 210 (02) :679-687
[10]  
Vrabie I.I., 1987, PITMAN MONOGRAPHS SU, V32