Synthesis and continuous catalytic application of alkaline protease nanoflowers-PVA composite hydrogel

被引:31
作者
Zhang, Haiyang [1 ,2 ]
Fei, Xu [1 ]
Tian, Jing [2 ]
Li, Yao [1 ]
Zhi, Hui [2 ]
Wang, Kang [2 ]
Xu, Longquan [1 ]
Wang, Yi [2 ]
机构
[1] Dalian Polytech Univ, Instrumental Anal Ctr, 1 Qinggongyuan Rd, Dalian 116034, Peoples R China
[2] Dalian Polytech Univ, Sch Biol Engn, 1 Qinggongyuan Rd, Dalian 116034, Peoples R China
基金
中国国家自然科学基金;
关键词
Hybrid nanoflowers; PVA-hydrogels; Alkaline protease; Enzymatic activity; INORGANIC HYBRID NANOFLOWERS; INDUSTRIAL BIOCATALYSTS; ENZYME IMMOBILIZATION; STABILITY; STABILIZATION; STRATEGIES;
D O I
10.1016/j.catcom.2018.07.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper reports a facile approach for the synthesis of alkaline protease nanoflowers-poly(vinyl alcohol) (PVA) composite hydrogel (NPCH) from alkaline protease-Cu-3(PO4)(2)center dot 3H(2)O nanoflowers and PVA hydrogel through freezing-thawing. During continuous catalytic application, the PVA hydrogel network protected alkaline protease-Cu-3(PO4)(2)center dot 3H(2)O nanoflowers from damage and helped maintain enzymatic activity at high levels. The enzyme that had been immobilized in nanoflowers and NPCH demonstrated 1027% and 605% higher activity than the free alkaline protease derived from Bacillus licheniformis. When used in cyclic catalysis, NPCH exhibited better reusability than nanoflowers and was easily separated from the product.
引用
收藏
页码:5 / 9
页数:5
相关论文
共 35 条
[1]   Enzyme from Daucus carota root catalyzed asymmetric cross aldol reaction [J].
Acharya, Chiranjit ;
Mandal, Madhumita ;
Dutta, Trina ;
Ghosh, Anil Kumar ;
Jaisankar, Parasuraman .
TETRAHEDRON LETTERS, 2016, 57 (39) :4382-4385
[2]   Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts [J].
Barbosa, Oveimar ;
Ortiz, Claudia ;
Berenguer-Murcia, Angel ;
Torres, Rodrigo ;
Rodrigues, Rafael C. ;
Fernandez-Lafuente, Roberto .
BIOTECHNOLOGY ADVANCES, 2015, 33 (05) :435-456
[3]   Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods [J].
Cantone, Sara ;
Ferrario, Valerio ;
Corici, Livia ;
Ebert, Cynthia ;
Fattor, Diana ;
Spizzo, Patrizia ;
Gardossi, Lucia .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (15) :6262-6276
[4]   Preparation, optimization and property of PVA-HA/PAA composite hydrogel [J].
Chen, Kai ;
Liu, Jinlong ;
Yang, Xuehui ;
Zhang, Dekun .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 78 :520-529
[5]   Nanomaterials for biocatalyst immobilization - state of the art and future trends [J].
Cipolatti, Eliane P. ;
Valerio, Alexsandra ;
Henriques, Rosana O. ;
Moritz, Denise E. ;
Ninow, Jorge L. ;
Freire, Denise M. G. ;
Manoel, Evelin A. ;
Fernandez-Lafuente, Roberto ;
de Oliveira, Debora .
RSC ADVANCES, 2016, 6 (106) :104675-104692
[6]   Immobilization of enzyme on chiral polyelectrolyte surface [J].
Ding, Chao ;
Sun, Hanjun ;
Ren, Jinsong ;
Qu, Xiaogang .
ANALYTICA CHIMICA ACTA, 2017, 952 :88-95
[7]   Artificial enzymes based on supramolecular scaffolds [J].
Dong, Zeyuan ;
Luo, Quan ;
Liu, Junqiu .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (23) :7890-7908
[8]   Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation [J].
Fernandez-Lafuente, Roberto .
ENZYME AND MICROBIAL TECHNOLOGY, 2009, 45 (6-7) :405-418
[9]   Designing Inorganic Porous Materials for Enzyme Adsorption and Applications in Biocatalysis [J].
Fried, Dorothee I. ;
Brieler, Felix J. ;
Froeba, Michael .
CHEMCATCHEM, 2013, 5 (04) :862-884
[10]   Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance [J].
Garcia-Galan, Cristina ;
Berenguer-Murcia, Angel ;
Fernandez-Lafuente, Roberto ;
Rodrigues, Rafael C. .
ADVANCED SYNTHESIS & CATALYSIS, 2011, 353 (16) :2885-2904