A HYBRIDIZABLE WEAK GALERKIN METHOD FOR THE HELMHOLTZ EQUATION WITH LARGE WAVE NUMBER: hp ANALYSIS

被引:0
|
作者
Wang, Jiangxing [1 ]
Zhang, Zhimin [1 ,2 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会;
关键词
Weak Galerkin method; hybridizable method; Helmholtz equation; large wave number; error estimates; FINITE-ELEMENT-METHOD; PREASYMPTOTIC ERROR ANALYSIS; 2ND-ORDER ELLIPTIC PROBLEMS; CIP-FEM; VERSION; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an hp hybridizable weak Galerkin (hp-HWG) method is introduced to solve the Helmholtz equation with large wave number in two and three dimensions. By choosing a specific parameter and using the duality argument, we prove that the proposed method is stable under certain mesh constraint. Error estimate is obtained by using the stability analysis and the duality argument. Several numerical results are provided to confirm our theoretical results.
引用
收藏
页码:744 / 761
页数:18
相关论文
共 50 条
  • [41] ANALYSIS OF A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE MAXWELL OPERATOR
    Chen, Gang
    Cui, Jintao
    Xu, Liwei
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (01): : 301 - 324
  • [42] Numerical analysis of energy stable weak Galerkin schemes for the Cahn-Hilliard equation
    Zhao, Wenju
    Guan, Qingguang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118
  • [43] Developing weak Galerkin finite element methods for the wave equation
    Huang, Yunqing
    Li, Jichun
    Li, Dan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (03) : 868 - 884
  • [44] Approximations of the Helmholtz equation with variable wave number in one dimension
    Mitsoudis, Dimitrios A.
    Plexousakis, Michael
    Makrakis, George N.
    Makridakis, Charalambos
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (04)
  • [45] AN ABSOLUTELY STABLE DISCONTINUOUS GALERKIN METHOD FOR THE INDEFINITE TIME-HARMONIC MAXWELL EQUATIONS WITH LARGE WAVE NUMBER
    Feng, Xiaobing
    Wu, Haijun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2356 - 2380
  • [46] Plane wave discontinuous Galerkin methods for the Helmholtz equation and Maxwell equations in anisotropic media
    Yuan, Long
    Hu, Qiya
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 97 : 355 - 374
  • [47] A systematic study on weak Galerkin finite-element method for second-order wave equation
    Jana, Puspendu
    Kumar, Naresh
    Deka, Bhupen
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [48] Convergence of Weak Galerkin Finite Element Method for Second Order Linear Wave Equation in Heterogeneous Media
    Deka, Bhupen
    Roy, Papri
    Kumar, Naresh
    Kumar, Raman
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2023, 16 (02): : 323 - 347
  • [49] A systematic study on weak Galerkin finite-element method for second-order wave equation
    Puspendu Jana
    Naresh Kumar
    Bhupen Deka
    Computational and Applied Mathematics, 2022, 41
  • [50] Mortar Coupling of hp-Discontinuous Galerkin and Boundary Element Methods for the Helmholtz Equation
    Erath, Christoph
    Mascotto, Lorenzo
    Melenk, Jens M.
    Perugia, Ilaria
    Rieder, Alexander
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)