IMPROVED PARAMETER ESTIMATION BY NOISE COMPENSATION IN THE TIME-SCALE DOMAIN
被引:0
作者:
McCusker, James R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USAUniv Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA
McCusker, James R.
[1
]
Currier, Todd
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USAUniv Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA
Currier, Todd
[1
]
Danai, Kourosh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USAUniv Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA
Danai, Kourosh
[1
]
机构:
[1] Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA
来源:
PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE 2009, PTS A AND B
|
2010年
关键词:
WAVELET SHRINKAGE;
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
It was shown recently that parameter estimation can be performed directly in the time-scale domain by isolating regions wherein the prediction error can be attributed to the error of individual dynamic model parameters [1]. Based on these single-parameter attributions of the prediction error, individual parameter errors can be estimated for iterative parameter estimation. A benefit of relying entirely on the time-scale domain for parameter estimation is the added capacity for noise suppression. This paper explores this benefit by introducing a noise compensation method that estimates the distortion by noise of the prediction error in the time-scale domain and incorporates it as a confidence factor when estimating individual parameter errors. This method is shown to further improve the estimated parameters beyond the time-filtering and denoising techniques developed for time-based estimation.