Online Automated Seizure Detection in Temporal Lobe Epilepsy Patients Using Single-lead ECG

被引:34
作者
De Cooman, Thomas [1 ,2 ]
Varon, Carolina [1 ,2 ]
Hunyadi, Borbala [1 ,2 ]
Van Paesschen, Wim [3 ,4 ,5 ]
Lagae, Lieven [4 ,5 ]
Van Huffel, Sabine [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, Kasteelpk Arenberg 10,Box 2446, B-3000 Leuven, Belgium
[2] IMEC, Leuven, Belgium
[3] UZ Leuven, Dept Neurol, Herestraat 49, B-3000 Leuven, Belgium
[4] Katholieke Univ Leuven, Herestraat 49, B-3000 Leuven, Belgium
[5] UZ Leuven, Dept Child Neurol, Herestraat 49, B-3000 Leuven, Belgium
基金
欧洲研究理事会;
关键词
Epilepsy; electrocardiogram; seizure detection; home monitoring; HEART-RATE CHANGES;
D O I
10.1142/S0129065717500228
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automated seizure detection in a home environment has been of increased interest the last couple of decades. The electrocardiogram is one of the signals that is suited for this application. In this paper, a new method is described that classifies different heart rate characteristics in order to detect seizures from temporal lobe epilepsy patients. The used support vector machine classifier is trained on data from other patients, so that the algorithm can be used directly from the start of each new recording. The algorithm was tested on a dataset of more than 918 h of data coming from 17 patients containing 127 complex partial and generalized partial seizures. The algorithm was able to detect 81.89% of the seizures, with on average 1.97 false alarms per hour. These results show a strong drop in the number of false alarms of more than 50% compared to other heart rate-based patient-independent algorithms from the literature, at the expense of a slightly higher detection delay of 17.8s on average.
引用
收藏
页数:17
相关论文
共 37 条
[1]  
Adeli H, 2010, AUTOMATED EEG-BASED DIAGNOSIS OF NEUROLOGICAL DISORDERS: INVENTING THE FUTURE OF NEUROLOGY, P1
[2]   Applying support vector machines to imbalanced datasets [J].
Akbani, R ;
Kwek, S ;
Japkowicz, N .
MACHINE LEARNING: ECML 2004, PROCEEDINGS, 2004, 3201 :39-50
[3]  
[Anonymous], 2014, 8 INT S MED INF COMM
[4]   Detection of generalized tonicclonic seizures by a wireless wrist accelerometer: A prospective, multicenter study [J].
Beniczky, Sandor ;
Polster, Tilman ;
Kjaer, Troels W. ;
Hjalgrim, Helle .
EPILEPSIA, 2013, 54 (04) :e58-e61
[5]  
Camm AJ, 1996, CIRCULATION, V93, P1043
[6]   Automated Algorithm for Generalized Tonic-Clonic Epileptic Seizure Onset Detection Based on sEMG Zero-Crossing Rate [J].
Conradsen, Isa ;
Beniczky, Sandor ;
Hoppe, Karsten ;
Wolf, Peter ;
Sorensen, Helge B. D. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (02) :579-585
[7]   Accelerometry-Based Home Monitoring for Detection of Nocturnal Hypermotor Seizures Based on Novelty Detection [J].
Cuppens, Kris ;
Karsmakers, Peter ;
Van de Vel, Anouk ;
Bonroy, Bert ;
Milosevic, Milica ;
Luca, Stijn ;
Croonenborghs, Tom ;
Ceulemans, Berten ;
Lagae, Lieven ;
Van Huffel, Sabine ;
Vanrumste, Bart .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2014, 18 (03) :1026-1033
[8]  
De Cooman T, 2014, EUR SIGNAL PR CONF, P1532
[9]  
De Cooman T, 2015, COMPUT CARDIOL CONF, V42, P977, DOI 10.1109/CIC.2015.7411076
[10]  
De Cooman T, 2015, IEEE ENG MED BIO, P5597, DOI 10.1109/EMBC.2015.7319661