Microstructural evolution and corrosion behavior of CoCrFeNiAlxMn(1-x) dual-phase high-entropy alloy coatings prepared by laser cladding

被引:60
|
作者
Sun, Shifeng [1 ,2 ]
Liu, Hao [1 ,2 ]
Hao, Jingbin [1 ]
Yang, Haifeng [1 ]
机构
[1] China Univ Min & Technol, Sch Mech & Elect Engn, Xuzhou, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Jiangsu Key Lab Mine Mech & Elect Equipment, Xuzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
High entropy alloy coating; Laser cladding; Passive film; Corrosion resistance; Corrosion mechanism; COMPOSITE COATINGS; RESISTANCE; PROPERTY;
D O I
10.1016/j.jallcom.2021.161251
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CoCrFeNiAlxMn(1-x) (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) high-entropy alloy (HEA) coatings were prepared on the surface of AISI 1045 steel via laser cladding technology. The microstructural evolution and corrosion resistance of the coatings have been systematically studied. The results showed that the crystalline structure of the HEA coatings changed from a single FCC solid-solution to dual-phase of FCC+BCC solid-solution, and eventually to a single BCC solid-solution, with the gradual increase of x. The decrease in the ratio of FCC phase to BCC phase volume fraction with increasing of x indicated that Al element had a stronger effect to form BCC phase than Mn element. The corrosion resistance of CoCrFeNiAlxMn(1-x) HEA coatings was quantitatively analyzed by fitting equivalent circuit and calculating electrochemical parameters. For the dual-phase HEA coatings (x = 0.2 to 0.8), the coating had the best corrosion resistance with maximum impedance (25,016.228 Omega/cm(2)) and the minimum corrosion rate (0.0464 g/m(2)h) when x = 0.8. This was due to the fact that the passive film became stable and had stronger self-repair ability with x increasing from 0.2 to 0.8. The passive film was mainly identified as Al2O3, Co3O4, Cr2O3, Fe2O3, Fe3O4, and a small amount of Mn2O3. With the gradual increasing of x, the dominant corrosion mechanism changed from pitting corrosion to dual-phase corrosion. The mechanisms of pitting corrosion and dual-phase corrosion were analyzed in detail. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Microstructural evolution and high temperature hot corrosion behaviour of AlCoCrFeNiTi high-entropy alloy coatings
    Odabas, Okan
    Ozgurluk, Yasin
    Karaoglanli, Abdullah Cahit
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [42] The CrFeNbTiMox refractory high-entropy alloy coatings prepared on the 40Cr by laser cladding
    Chen, Ba
    Li, Xinmei
    Tian, Luyan
    Jia, Haiyang
    Li, Hang
    Li, Yang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 966
  • [43] Review on hard particle reinforced laser cladding high-entropy alloy coatings
    Lian, Guofu
    Gao, Weibo
    Chen, Changrong
    Huang, Xu
    Feng, Meiyan
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 1366 - 1405
  • [44] Microstructure and Properties of FeCrNiCoMnx, High-Entropy Alloy Coating Prepared by Laser Cladding
    Zhang Chong
    Wu Bingqian
    Wang Qianting
    Chen Dingning
    Dai Pinqiang
    RARE METAL MATERIALS AND ENGINEERING, 2017, 46 (09) : 2639 - 2644
  • [45] Ultrasonic Cavitation Erosion Behavior of CoCrxFeMnNi High-Entropy Alloy Coatings Prepared by Plasma Cladding
    Zhang, Kaige
    Yin, Danqing
    Wang, Bin
    Li, Maochang
    Xiao, Xiao
    Ma, Ning
    Zhang, Keke
    METALS, 2023, 13 (03)
  • [46] Influence of Al Addition on the Microstructure and Wear Behavior of Laser Cladding FeCoCrNiAlx High-Entropy Alloy Coatings
    Liu, Yang
    Xu, Zhixiang
    Xu, Gaojie
    Chen, Hongyong
    COATINGS, 2023, 13 (02)
  • [47] Fabrication and Characterization of AlxFeMnNiCrCu0.5(x=0.0; 0.5; 1.0) High-Entropy Alloy Coatings by Laser Cladding
    Thanhhung Nguyen
    Ly, Xuannam
    Huang, Ming
    Qin, Yuan
    Yang, Sen
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2022, 31 (04) : 980 - 990
  • [48] Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding
    Li, Xiaofeng
    Feng, Yinghao
    Liu, Bin
    Yi, Denghao
    Yang, Xiaohui
    Zhang, Weidong
    Chen, Gang
    Liu, Yong
    Bai, Peikang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 788 : 485 - 494
  • [49] Effects of pulse frequency on the microstructure and properties of AlCoCrFeNiMo(TiC) high-entropy alloy coatings prepared by laser cladding
    Yu, Kedong
    Zhao, Wei
    Li, Zhen
    Zhang, Bingrong
    Xiao, Guangchun
    Zhang, Hui
    SURFACE & COATINGS TECHNOLOGY, 2023, 458
  • [50] Effect of Processing Parameters on the Microstructure and Corrosion Properties of AlCrFeCoNi High-Entropy Alloy Coatings Fabricated by Laser Cladding
    Liu, Jingfu
    Bai, Minghan
    Xu, Wenjing
    Chu, Tongjiao
    METALS, 2025, 15 (03)