Certain operators with rough singular kernels

被引:39
作者
Chen, JC
Fan, DS
Ying, YM
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310028, Peoples R China
[2] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2003年 / 55卷 / 03期
关键词
WEIGHTED NORM INEQUALITIES; INTEGRAL-OPERATORS; FRACTIONAL INTEGRALS;
D O I
10.4153/CJM-2003-021-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the singular integral operator TOmega, alpha f(x) = P.v. integral(Rn) b(\y\)Omega(y')\y\(-n-alpha)f(x - y)dy, defined on all test functions f,where b is a bounded function, a greater than or equal to 0, Omega(y') is an integrable function on the unit sphere S(n-1) satisfying certain cancellation conditions. We prove that, for 1< p < infinity, TOmega, extends to a bounded operator from the Sobolev space L(alpha)(p) to the Lebesgue space L(p) with Omega being a distribution in the Hardy space H(q)(S(n-1)) where q = n-1/n-1+alpha. The result extends some known results on the singular integral operators. As applications, we obtain the boundedness for TiOmega, alpha on the Hardy spaces, as well as the boundedness for the truncated maximal operator T*(Omega, m).
引用
收藏
页码:504 / 532
页数:29
相关论文
共 30 条
  • [1] [Anonymous], GRUNDLEHREN MATH WIS
  • [2] Blank BE., 1997, Ann. Fac. Sci. Toulouse Math, V6, P429, DOI [10.5802/afst.873, DOI 10.5802/AFST.873]
  • [3] Calderon A., 1977, Appl. Anal., V7, P221, DOI 10.1080/00036817808839193
  • [4] ON SINGULAR INTEGRALS
    CALDERON, AP
    ZYGMUND, A
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1956, 78 (02) : 289 - 309
  • [5] ON THE EXISTENCE OF CERTAIN SINGULAR INTEGRALS
    CALDERON, AP
    ZYGMUND, A
    [J]. ACTA MATHEMATICA, 1952, 88 (03) : 85 - 139
  • [6] CHEN J, MAXIMAL SINGULAR INT
  • [7] CHEN J, 2002, CHINESE ANN MATH A, V23, P289
  • [8] MAXIMAL ESTIMATES FOR CESARO AND RIESZ MEANS ON SPHERES
    COLZANI, L
    TAIBLESON, MH
    WEISS, G
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (06) : 873 - 889
  • [9] COLZANI L, 1985, ANAL FUNZ APPL C, V4, P219
  • [10] Colzani L., 1982, Hardy spaces on spheres