Multi-particle Dynamical Systems and Polynomials

被引:6
作者
Demina, Maria V. [1 ]
Kudryashov, Nikolai A. [1 ]
机构
[1] Natl Res Nucl Univ MEPhI, Kashirskoe Sh 31, Moscow 115409, Russia
基金
俄罗斯科学基金会;
关键词
multi-particle dynamical systems; polynomial solutions of partial differential equations; orthogonal polynomials; PARTIAL-DIFFERENTIAL-EQUATIONS; POINT VORTICES; VORTEX SOURCES; EQUILIBRIA; ALGEBRA; MOTION;
D O I
10.1134/S1560354716030072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Polynomial dynamical systems describing interacting particles in the plane are studied. A method replacing integration of a polynomial multi-particle dynamical system by finding polynomial solutions of partial differential equations is introduced. The method enables one to integrate a wide class of polynomial multi-particle dynamical systems. The general solutions of certain dynamical systems related to linear second-order partial differential equations are found. As a by-product of our results, new families of orthogonal polynomials are derived.
引用
收藏
页码:351 / 366
页数:16
相关论文
共 25 条
[1]   CLASS OF POLYNOMIALS CONNECTED WITH KORTEWEG-DEVRIES EQUATION [J].
ADLER, M ;
MOSER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 61 (01) :1-30
[2]   RATIONAL AND ELLIPTIC SOLUTIONS OF KORTEWEG DE-VRIES EQUATION AND A RELATED MANY-BODY PROBLEM [J].
AIRAULT, H ;
MCKEAN, HP ;
MOSER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :95-148
[3]   Vortex crystals [J].
Aref, H ;
Newton, PK ;
Stremler, MA ;
Tokieda, T ;
Vainchtein, DL .
ADVANCES IN APPLIED MECHANICS, VOL 39, 2003, 39 :1-79
[4]   Relative equilibria of point vortices and the fundamental theorem of algebra [J].
Aref, Hassan .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2132) :2168-2184
[5]  
Bartman A.B., 1984, NONLINEAR TURBULENT, V3, P1175
[6]   The dynamics of three vortex sources [J].
Bizyaev, Ivan A. ;
Borisov, Alexey V. ;
Mamaev, Ivan S. .
REGULAR & CHAOTIC DYNAMICS, 2014, 19 (06) :694-701
[7]   On the problem of motion of vortex sources on a plane [J].
Borisov, A. V. ;
Mamaev, I. S. .
REGULAR & CHAOTIC DYNAMICS, 2006, 11 (04) :455-466
[8]   Multiparticle systems. The algebra of integrals and integrable cases [J].
Borisov, A. V. ;
Kilin, A. A. ;
Mamaev, I. S. .
REGULAR & CHAOTIC DYNAMICS, 2009, 14 (01) :18-41
[9]   Dynamic interaction of point vortices and a two-dimensional cylinder [J].
Borisov, Alexey V. ;
Mamaev, Ivan S. ;
Ramodanov, Sergey M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (06)
[10]  
Borisov AV., 1998, REGUL CHAOTIC DYN, V3, P28, DOI 10.1070/rd1998v003n01ABEH000059