Yang-Mills Flows on Nearly Kahler Manifolds and G 2-Instantons

被引:46
作者
Harland, Derek [1 ]
Ivanova, Tatiana A. [2 ]
Lechtenfeld, Olaf [1 ]
Popov, Alexander D. [2 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[2] JINR, Bogoliubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia
基金
俄罗斯基础研究基金会;
关键词
GAUGE-FIELDS; COMPACTIFICATIONS; EQUATIONS; CONNECTIONS; INSTANTONS; BUNDLES; SPACES;
D O I
10.1007/s00220-010-1115-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider Lie(G)-valued G-invariant connections on bundles over spaces G/H, R x G/H and R-2 x G/H, where G/H is a compact nearly K hler sixdimensional homogeneous space, and the manifolds R x G/H and R-2 x G/H carry G2-and Spin(7)-structures, respectively. By making a G-invariant ansatz, Yang-Mills theorywith torsion onR xG/H is reduced to Newtonian mechanics of a particle moving in a plane with a quartic potential. For particular values of the torsion, we find explicit particle trajectories, which obey first-order gradient or hamiltonian flow equations. In two cases, these solutions correspond to anti-self-dual instantons associated with one of two G2-structures on R x G/H. It is shown that both G2-instanton equations can be obtained from a single Spin(7)-instanton equation on R-2 x G/H.
引用
收藏
页码:185 / 204
页数:20
相关论文
共 57 条
[1]  
[Anonymous], 1989, PITMAN RES NOTES MAT
[2]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[3]   Special quantum field theories in eight and other dimensions [J].
Baulieu, L ;
Kanno, H ;
Singer, IM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 194 (01) :149-175
[4]   Four-dimensional string compactifications with D-branes, orientifolds and fluxes [J].
Blumenhagen, Ralph ;
Koers, Boris ;
Luest, Dieter ;
Stieberger, Stephan .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 445 (1-6) :1-193
[5]  
BRENDLE S, 2003, COMPLEX ANTISELF DUA
[6]   METRICS WITH EXCEPTIONAL HOLONOMY [J].
BRYANT, RL .
ANNALS OF MATHEMATICS, 1987, 126 (03) :525-576
[7]  
BUTRUILLE JB, 2006, HOMOGENEOUS NEARL KA
[8]   Yang-Mills fields on quaternionic spaces [J].
Capria, M. Mamone ;
Salamon, S. M. .
NONLINEARITY, 1988, 1 (04) :517-530
[9]  
Carriere JB, 1998, HUM FACTOR ERGON MAN, V8, P1, DOI 10.1002/(SICI)1520-6564(199824)8:1<1::AID-HFM1>3.0.CO
[10]  
2-7