Bifurcations and monodromy of the axially symmetric 1:1:-2 resonance

被引:4
作者
Efstathiou, Konstantinos [1 ]
Hanssmann, Heinz [2 ]
Marchesiello, Antonella [3 ]
机构
[1] Univ Groningen, Bernoulli Inst, POB 407, NL-9700 AK Groningen, Netherlands
[2] Univ Utrecht, Math Inst, Postbus 80010, NL-3508 TA Utrecht, Netherlands
[3] Czech Tech Univ, Fac Informat Technol, Dept Appl Math, Thakurova 9, Prague 16000 6, Czech Republic
关键词
Resonance; Bifurcations; Hamiltonian monodromy; Reduction; HAMILTONIAN-SYSTEMS; PERIODIC-SOLUTIONS; EIGENVALUES; COLLISION; TORI;
D O I
10.1016/j.geomphys.2019.103493
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider integrable Hamiltonian systems in three degrees of freedom near an elliptic equilibrium in 1:1:-2 resonance. The integrability originates from averaging along the periodic motion of the quadratic part and an imposed rotational symmetry about the vertical axis. Introducing a detuning parameter we find a rich bifurcation diagram, containing three parabolas of Hamiltonian Hopf bifurcations that join at the origin. We describe the monodromy of the resulting ramified 3-torus bundle as variation of the detuning parameter lets the system pass through 1:1:-2 resonance. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:30
相关论文
共 24 条
[1]  
Abraham R., 1978, Foundations of Mechanics
[2]  
[Anonymous], 2007, Appl. Math. Sci
[3]  
Arnold V.I., 1988, DYNAM SYST
[4]  
BERTOTTI ML, 1987, B UNIONE MAT ITAL, V1B, P965
[5]   BIFURCATION OF PERIODIC-SOLUTIONS NEAR A COLLISION OF EIGENVALUES OF OPPOSITE SIGNATURE [J].
BRIDGES, TJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1990, 108 :575-601
[6]   STABILITY OF PERIODIC-SOLUTIONS NEAR A COLLISION OF EIGENVALUES OF OPPOSITE SIGNATURE [J].
BRIDGES, TJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1991, 109 :375-403
[7]   Geometry of KAM tori for nearly integrable Hamiltonian systems [J].
Broer, Henk ;
Cushman, Richard ;
Fasso, Francesco ;
Takens, Floris .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :725-741
[8]   Non-integrability of first order resonances in Hamiltonian systems in three degrees of freedom [J].
Christov, Ognyan .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2012, 112 (02) :149-167
[9]  
Cushman R.H., 2015, Global Aspects of Classical Integrable Systems, V2nd ed.
[10]  
DELLANTONIO GF, 1984, B UNIONE MAT ITAL, V3B, P809