The Dirichlet problem for p-harmonic functions with respect to arbitrary compactifications

被引:5
|
作者
Bjorn, Anders [1 ]
Bjorn, Jana [1 ]
Sjodin, Tomas [1 ]
机构
[1] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
基金
瑞典研究理事会;
关键词
Dirichlet problem; harmonizable; invariance; metric space; nonlinear potential theory; Perron solution; p-harmonic function; Q-compactification; quasicontinuous; resolutive; Wiener solution; POTENTIAL-THEORY; UNBOUNDED SETS; METRIC-SPACES; PERRON METHOD; OBSTACLE; BOUNDARY; SUPERSOLUTIONS;
D O I
10.4171/RMI/1025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Dirichlet problem for p-harmonic functions on metric spaces with respect to arbitrary compactifications. A particular focus is on the Perron method, and as a new approach to the invariance problem we introduce Sobolev-Perron solutions. We obtain various resolutivity and invariance results, and also show that most functions that have earlier been proved to be resolutive are in fact Sobolev-resolutive. We also introduce (Sobolev)-Wiener solutions and harmonizability in this nonlinear context, and study their connections to (Sobolev)-Perron solutions, partly using Q-compactifications.
引用
收藏
页码:1323 / 1360
页数:38
相关论文
共 50 条
  • [31] Removable sets for Holder continuous p-harmonic functions on metric measure spaces
    Makalainen, Tero
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2008, 33 (02) : 605 - 624
  • [32] p-harmonic functions by way of intrinsic mean value properties
    Arroyo, Angel
    Llorente, Jose G.
    ADVANCES IN CALCULUS OF VARIATIONS, 2023, 16 (01) : 111 - 129
  • [33] LIOUVILLE TYPE THEOREMS FOR THE p-HARMONIC FUNCTIONS ON CERTAIN MANIFOLDS
    Chen, Jingyi
    Wang, Yue
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 282 (02) : 313 - 327
  • [34] p-HARMONIC FUNCTIONS ON COMPLETE MANIFOLDS WITH A WEIGHTED POINCARE INEQUALITY
    Bui Van Binh
    Nguyen Thac Dung
    Nguyen Thi Le Hai
    KODAI MATHEMATICAL JOURNAL, 2017, 40 (02) : 343 - 357
  • [35] Bounded Geometry and p-Harmonic Functions Under Uniformization and Hyperbolization
    Anders Björn
    Jana Björn
    Nageswari Shanmugalingam
    The Journal of Geometric Analysis, 2021, 31 : 5259 - 5308
  • [36] ENERGY FINITE p-HARMONIC FUNCTIONS ON GRAPHS AND ROUGH ISOMETRIES
    Kim, Seok Woo
    Lee, Yong Hah
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 22 (02): : 277 - 287
  • [37] ON THE ASYMPTOTIC MEAN VALUE PROPERTY FOR PLANAR p-HARMONIC FUNCTIONS
    Arroyo, Angel
    Llorente, Jose G.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) : 3859 - 3868
  • [38] BERGMAN SPACES, BLOCH SPACES AND INTEGRAL MEANS OF p-HARMONIC FUNCTIONS
    Fu, Xi
    Qiao, Jinjing
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (02) : 481 - 495
  • [39] Note on an elementary inequality and its application to the regularity of p-harmonic functions
    Sarsa, Saara
    ANNALES FENNICI MATHEMATICI, 2022, 47 (01): : 139 - 153
  • [40] Existence and non-existence of minimal graphic and p-harmonic functions
    Casteras, Jean-Baptiste
    Heinonen, Esko
    Holopainen, Ilkka
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (01) : 341 - 366