On a New Generalized Integral Operator and Certain Operating Properties

被引:18
作者
Guzman, Paulo M. [1 ,2 ]
Lugo, Luciano M. [1 ]
Napoles Valdes, Juan E. [1 ]
Vivas-Cortez, Miguel [3 ]
机构
[1] UNNE, FaCENA, Av Libertad 5450, RA-3400 Corrientes, Argentina
[2] UNNE, Fac Ingn, RA-3500 Resistencia, Chaco, Argentina
[3] Pontificia Univ Catolica Ecuador, Fac Ciencias Exactas & Nat, Escuela Ciencias Fis & Matemat, Quito 170143, Ecuador
关键词
integral operator; fractional calculus; FRACTIONAL CALCULUS OPERATORS; LEFFLER TYPE FUNCTION; DEFINITION;
D O I
10.3390/axioms9020069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a general definition of a generalized integral operator which contains as particular cases, many of the well-known, fractional and integer order integrals.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 38 条
[1]   Solutions of the Nonlinear Integral Equation and Fractional Differential Equation Using the Technique of a Fixed Point with a Numerical Experiment in Extended b-Metric Space [J].
Abdeljawad, Thabet ;
Agarwal, Ravi P. ;
Karapinar, Erdal ;
Kumari, P. Sumati .
SYMMETRY-BASEL, 2019, 11 (05)
[2]  
Afshari H, 2015, ELECTRON J DIFFER EQ, P1
[3]  
AGARWAL RP, 1953, CR HEBD ACAD SCI, V236, P2031
[4]  
[Anonymous], 1993, FRACTIONAL INTEGRALS, DOI DOI 10.1016/j.aej.2013.09.005
[5]  
Atangana A., 2016, DERIVATIVE NEW PARAM
[6]   COMMENTS ON: "THE FAILURE OF CERTAIN FRACTIONAL CALCULUS OPERATORS IN TWO PHYSICAL MODELS" [J].
Baleanu, Dumitru .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (01) :292-297
[7]   On Fractional Operators and Their Classifications [J].
Baleanu, Dumitru ;
Fernandez, Arran .
MATHEMATICS, 2019, 7 (09)
[8]   EXISTENCE OF SOLUTIONS OF GENERALIZED FRACTIONAL DIFFERENTIAL EQUATION WITH NONLOCAL INITIAL CONDITION [J].
Bhairat, Sandeep P. ;
Dhaigude, Dnyanoba-bhaurao .
MATHEMATICA BOHEMICA, 2019, 144 (02) :203-220
[9]  
Cnotsignnar I., 2003, INT MATH J, V3, P1393
[10]   A Review of Definitions for Fractional Derivatives and Integral [J].
de Oliveira, Edmundo Capelas ;
Tenreiro Machado, Jose Antonio .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014