Energy-Efficient Iterative Refinement Using Dynamic Precision

被引:8
作者
Lee, JunKyu [1 ]
Vandierendonck, Hans [1 ]
Arif, Mahwish [1 ]
Peterson, Gregory D. [2 ]
Nikolopoulose, Dimitrios S. [1 ]
机构
[1] Queens Univ Belfast, Inst Elect Commun & Informat Technol, Belfast BT7 1NN, Antrim, North Ireland
[2] Univ Tennessee, Elect Engn & Comp Sci, Knoxville, TN 37996 USA
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
Transprecision; dynamic precision; dynamic algorithm; iterative refinement; energy savings;
D O I
10.1109/JETCAS.2018.2850665
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mixed precision is a promising approach to save energy in iterative refinement algorithms since it obtains speed-up without necessitating additional cores and parallelization. However, conventional mixed precision methods utilize statically defined precision in a loop, thus hindering further speed-up and energy savings. We overcome this problem by proposing novel methods which allow iterative refinement to utilize variable precision arithmetic dynamically in a loop (i.e., a trans-precision approach). Our methods restructure a numeric algorithm dynamically according to runtime numeric behavior and remove unnecessary accuracy checks. We implemented our methods by extending one conventional mixed precision iterative refinement algorithm on an Intel Xeon E5-2650 2GHz core with MKL 2017 and XBLAS 1.0. Our dynamic precision approach demonstrates 2.0-2.6x speed-up and 1.8-2.4x energy savings compared with mixed precision iterative refinement when double precision solution accuracy is required for forward error and with matrix dimensions ranging from 4K to 32K.
引用
收藏
页码:722 / 735
页数:14
相关论文
共 22 条
[1]   A Framework for Automated and Controlled Floating-Point Accuracy Reduction in Graphics Applications on GPUs [J].
Angerd, Alexandra ;
Sintorn, Erik ;
Stenstrom, Per .
ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2017, 14 (04)
[2]  
[Anonymous], 2002, Accuracy and stability of numerical algorithms
[3]  
[Anonymous], 2013, P INT C HIGH PERF CO
[4]  
[Anonymous], 2010, Axisymmetric centrifuge modelling of deep penetration in sand
[5]  
[Anonymous], 1989, THESIS
[6]  
[Anonymous], 2012, THESIS U GEORGIA ATH
[7]   High-precision computation: Mathematical physics and dynamics [J].
Bailey, D. H. ;
Barrio, R. ;
Borwein, J. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (20) :10106-10121
[8]   Uncertain<T>: A First-Order Type for Uncertain Data [J].
Bornholt, James ;
Mytkowicz, Todd ;
McKinley, Kathryn S. .
ACM SIGPLAN NOTICES, 2014, 49 (04) :51-65
[9]   Error bounds from extra-precise iterative refinement [J].
Demmel, James ;
Hida, Yozo ;
Kahan, William ;
Li, Xiaoye S. ;
Mukherjee, Sonil ;
Riedy, E. Jason .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2006, 32 (02) :325-351
[10]  
Geddes K.O., 2003, P 2003 INT S SYMB AL, P111