Some singular value inequalities via convexity

被引:0
作者
Leka, Zoltan [1 ]
机构
[1] Royal Holloway Univ London, Egham, Surrey, England
关键词
Trace; singular value; convexity; norms; NORMS;
D O I
10.1080/03081087.2017.1418829
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If denote the Euclidean lengths of the column vectors of any matrix Z, then a fundamental inequality related to Hadamard products states that where is the ith singular value. In this paper, we shall offer a simple proof of this result via convexity arguments. In addition, this technique is applied to obtain some further singular value inequalities as well.
引用
收藏
页码:360 / 369
页数:10
相关论文
共 22 条
[1]   MAJORIZATIONS AND INEQUALITIES IN MATRIX-THEORY [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 199 :17-67
[2]  
[Anonymous], 1987, Linear and Multilinear Algebra
[3]   ON MAJORIZATION AND SCHUR PRODUCTS [J].
BAPAT, RB ;
SUNDER, VS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 72 (DEC) :107-117
[4]   Robust linear optimization under general norms [J].
Bertsimas, D ;
Pachamanova, D ;
Sim, M .
OPERATIONS RESEARCH LETTERS, 2004, 32 (06) :510-516
[5]  
Bhatia Rajendra., 1996, MATRIX ANAL
[6]   A class of unitarily invariant norms on B(H) [J].
Chan, JT ;
Li, CK ;
Tu, CCN .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (04) :1065-1076
[7]  
Grafakos L, 2014, GRAD TEXTS MATH, V250, DOI 10.1007/978-1-4939-1230-8
[8]   A NOTE ON VONNEUMANN TRACE INEQUALITY [J].
GRIGORIEFF, RD .
MATHEMATISCHE NACHRICHTEN, 1991, 151 :327-328
[9]  
Hardy J. Littlewood, 1952, The Mathematical Gazette, DOI DOI 10.1017/S0025557200027455
[10]  
HORN R, 1987, LINEAR MULTILINEAR A, V20, P19