Decomposition and Completion of Sum-of-Squares Matrices

被引:0
作者
Zheng, Yang [1 ]
Fantuzzi, Giovanni [2 ]
Papachristodoulou, Antonis [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford, England
[2] Imperial Coll London, Dept Aeronaut, London, England
来源
2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2018年
基金
英国工程与自然科学研究理事会;
关键词
OPTIMIZATION; RELAXATIONS; SPARSITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a notion of decomposition and completion of sum-of-squares (SOS) matrices. We show that a subset of sparse SOS matrices with chordal sparsity patterns can be equivalently decomposed into a sum of multiple SOS matrices that are nonzero only on a principal submatrix. Also, the completion of an SOS matrix is equivalent to a set of SOS conditions on its principal submatrices and a consistency condition on the Gram representation of the principal submatrices. These results are partial extensions of chordal decomposition and completion of scalar matrices to matrices with polynomial entries. We apply the SOS decomposition result to exploit sparsity in matrix-valued SOS programs. Numerical results demonstrate the high potential of this approach for solving large-scale sparse matrix-valued SOS programs.
引用
收藏
页码:4026 / 4031
页数:6
相关论文
共 26 条
  • [1] POSITIVE SEMIDEFINITE MATRICES WITH A GIVEN SPARSITY PATTERN
    AGLER, J
    HELTON, JW
    MCCULLOUGH, S
    RODMAN, L
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 107 : 101 - 149
  • [2] Ahmadi Amir Ali, 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC), P453, DOI 10.1109/CDC.2017.8263706
  • [3] Robust Stability Analysis of Sparsely Interconnected Uncertain Systems
    Andersen, Martin S.
    Pakazad, Sina Khoshfetrat
    Hansson, Anders
    Rantzer, Anders
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (08) : 2151 - 2156
  • [4] Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones
    Andersen M.S.
    Dahl J.
    Vandenberghe L.
    [J]. Mathematical Programming Computation, 2010, 2 (3-4) : 167 - 201
  • [5] Blekherman G, 2012, SEMIDEFINITE OPTIMIZ
  • [6] Exact Matrix Completion via Convex Optimization
    Candes, Emmanuel J.
    Recht, Benjamin
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (06) : 717 - 772
  • [7] RANK-SPARSITY INCOHERENCE FOR MATRIX DECOMPOSITION
    Chandrasekaran, Venkat
    Sanghavi, Sujay
    Parrilo, Pablo A.
    Willsky, Alan S.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (02) : 572 - 596
  • [8] Distributed Optimal Power Flow for Smart Microgrids
    Dall'Anese, Emiliano
    Zhu, Hao
    Giannakis, Georgios B.
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2013, 4 (03) : 1464 - 1475
  • [9] Exploiting sparsity in semidefinite programming via matrix completion I: General framework
    Fukuda, M
    Kojima, M
    Murota, K
    Nakata, K
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2001, 11 (03) : 647 - 674
  • [10] Symmetry groups, semidefinite programs, and sums of squares
    Gatermann, K
    Parrilo, PA
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 192 (1-3) : 95 - 128