Nuclear Expression of a Mitochondrial DNA Gene: Mitochondrial Targeting of Allotopically Expressed Mutant ATP6 in TransgenicMice

被引:16
作者
Dunn, David A. [1 ]
Pinkert, Carl A. [1 ]
机构
[1] Auburn Univ, Coll Vet Med, Dept Pathobiol, Auburn, AL 36849 USA
来源
JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY | 2012年
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
MUTATION; DISEASE; SYSTEM; CELLS; BIOENERGETICS; ORGANELLE; THERAPY; SUBUNIT; PRODUCT; GENOME;
D O I
10.1155/2012/541245
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Nuclear encoding of mitochondrial DNA transgenes followed by mitochondrial targeting of the expressed proteins (allotopic expression; AE) represents a potentially powerful strategy for creating animal models of mtDNA disease. Mice were created that allotopically express either a mutant (A6M) or wildtype (A6W) mt-Atp6 transgene. Compared to non-transgenic controls, A6M mice displayed neuromuscular and motor deficiencies (wire hang, pole, and balance beam analyses; P < 0.05), no locomotor differences (gait analysis; P < 0.05) and enhanced endurance in Rota-Rod evaluations (P < 0.05). A6W mice exhibited inferior muscle strength (wire hang test; P < 0.05), no difference in balance beam footsteps, accelerating Rota-Rod, pole test and gait analyses; (P < 0.05) and superior performance in balance beam time-to-cross and constant velocity Rota-Rod analyses (P < 0.05) in comparison to non-transgenic control mice. Mice of both transgenic lines did not differ from non-transgenic controls in a number of bioenergetic and biochemical tests including measurements of serum lactate and mitochondrial MnSOD protein levels, ATP synthesis rate, and oxygen consumption (P > 0.05). This study illustrates a mouse model capable of circumventing in vivo mitochondrial mutations. Moreover, it provides evidence supporting AE as a tool for mtDNA disease research with implications in development of DNA-based therapeutics.
引用
收藏
页数:7
相关论文
共 26 条
  • [1] Carter RJ, 1999, J NEUROSCI, V19, P3248
  • [2] Mitochondrial medicine: to a new era of gene therapy for mitochondrial DNA mutations
    Cwerman-Thibault, Helene
    Sahel, Jose-Alain
    Corral-Debrinski, Marisol
    [J]. JOURNAL OF INHERITED METABOLIC DISEASE, 2011, 34 (02) : 327 - 344
  • [3] Mitochondrial DNA background modifies the bioenergetics of NARP/MILS ATP6 mutant cells
    D'Aurelio, M.
    Vives-Bauza, C.
    Davidson, M. M.
    Manfredi, G.
    [J]. HUMAN MOLECULAR GENETICS, 2010, 19 (02) : 374 - 386
  • [4] Mitochondrial diseases: Therapeutic approaches
    DiMauro, Salvatore
    Mancuso, Michelangelo
    [J]. BIOSCIENCE REPORTS, 2007, 27 (1-3) : 125 - 137
  • [5] Dunn DA, 2011, BIOCHIM BIOPHYS ACTA, V1820, P601
  • [6] ISOLATION OF MONOCLONAL-ANTIBODIES SPECIFIC FOR HUMAN C-MYC PROTO-ONCOGENE PRODUCT
    EVAN, GI
    LEWIS, GK
    RAMSAY, G
    BISHOP, JM
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (12) : 3610 - 3616
  • [7] YEAST MITOCHONDRIAL ATPASE SUBUNIT-8, NORMALLY A MITOCHONDRIAL GENE-PRODUCT, EXPRESSED INVITRO AND IMPORTED BACK INTO THE ORGANELLE
    GEARING, DP
    NAGLEY, P
    [J]. EMBO JOURNAL, 1986, 5 (13) : 3651 - 3655
  • [8] Efficiency and Safety of AAV-Mediated Gene Delivery of the Human ND4 Complex I Subunit in the Mouse Visual System
    Guy, John
    Qi, Xiaoping
    Koilkonda, Rajeshwari D.
    Arguello, Tania
    Chou, Tsung-Han
    Ruggeri, Marco
    Porciatti, Vittorio
    Lewin, Alfred S.
    Hauswirth, William W.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2009, 50 (09) : 4205 - 4214
  • [9] HOLT IJ, 1990, AM J HUM GENET, V46, P428
  • [10] Behavioral phenotyping of mice in pharmacological and toxicological research
    Karl, T
    Pabst, R
    von Hörsten, S
    [J]. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY, 2003, 55 (01) : 69 - 83