Existence of solutions for a Schrodinger system with linear and nonlinear couplings

被引:21
作者
Li, Kui [1 ]
Zhang, Zhitao [2 ,3 ,4 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
POSITIVE SOLUTIONS; EQUATIONS; UNIQUENESS;
D O I
10.1063/1.4960046
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study an important system of Schrodinger equations with linear and nonlinear couplings arising from Bose-Einstein condensates. We use the Nehari manifold to prove the existence of a ground state solution; moreover, we give the sign of the solutions depending on linear coupling; by using index theory and Nehari manifold, we prove that there exist infinitely many positive bound state solutions. Published by AIP Publishing.
引用
收藏
页数:17
相关论文
共 25 条
[21]   Uniqueness of positive radial solutions for Δu-u+up=0 on an annulus [J].
Tang, MX .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 189 (01) :148-160
[22]   Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems [J].
Tavares, Hugo ;
Terracini, Susanna .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (02) :279-300
[23]   Multipulse Phases in k-Mixtures of Bose-Einstein Condensates [J].
Terracini, Susanna ;
Verzini, Gianmaria .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 194 (03) :717-741
[24]   Existence and bifurcation of solutions for a double coupled system of Schrodinger equations [J].
Tian RuShun ;
Zhang ZhiTao .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (08) :1607-1620
[25]  
Zhang Z, 2013, DEV MATH