Existence of solutions for a Schrodinger system with linear and nonlinear couplings

被引:21
作者
Li, Kui [1 ]
Zhang, Zhitao [2 ,3 ,4 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
POSITIVE SOLUTIONS; EQUATIONS; UNIQUENESS;
D O I
10.1063/1.4960046
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study an important system of Schrodinger equations with linear and nonlinear couplings arising from Bose-Einstein condensates. We use the Nehari manifold to prove the existence of a ground state solution; moreover, we give the sign of the solutions depending on linear coupling; by using index theory and Nehari manifold, we prove that there exist infinitely many positive bound state solutions. Published by AIP Publishing.
引用
收藏
页数:17
相关论文
共 25 条
[1]   Multi-bump solitons to linearly coupled systems of nonlinear Schrodinger equations [J].
Ambrosetti, A. ;
Colorado, E. ;
Ruiz, D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (01) :85-112
[2]   Standing waves of some coupled nonlinear Schrodinger equations [J].
Ambrosetti, Antonio ;
Colorado, Eduardo .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 :67-82
[3]  
[Anonymous], 2004, INTRO NONLINEAR FUNC
[4]  
[Anonymous], 2000, Variational methods
[5]  
[Anonymous], 1997, Minimax theorems
[6]   A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system [J].
Bartsch, Thomas ;
Dancer, E. Norman ;
Wang, Zhi-Qiang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :345-361
[7]   Solitary Waves for Linearly Coupled Nonlinear Schrodinger Equations with Inhomogeneous Coefficients [J].
Belmonte-Beitia, Juan ;
Perez-Garcia, Victor M. ;
Torres, Pedro J. .
JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (04) :437-451
[8]   The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture (vol 262, pg 1087, 2012) [J].
Dancer, E. N. ;
Wang, Kelei ;
Zhang, Zhitao .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (04) :1125-1129
[9]  
Dancer EN, 2012, T AM MATH SOC, V364, P961
[10]   The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture [J].
Dancer, E. N. ;
Wang, Kelei ;
Zhang, Zhitao .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (03) :1087-1131