Regulatory role of XynR (YagI) in catabolism of xylonate in Escherichia coli K-12

被引:14
|
作者
Shimada, Tomohiro [1 ,2 ]
Momiyama, Eri [3 ]
Yamanaka, Yuki [1 ,3 ]
Watanabe, Hiroki [3 ]
Yamamoto, Kaneyoshi [1 ,3 ]
Ishihama, Akira [1 ,3 ]
机构
[1] Hosei Univ, Res Ctr Micronano Technol, Kajino Cho 3-7-2, Koganei, Tokyo 1840003, Japan
[2] Meiji Univ, Sch Agr, Tama Ku, Kawasaki, Kanagawa 2148571, Japan
[3] Hosei Univ, Dept Frontier Biosci, Kajino Cho 3-7-2, Koganei, Tokyo 1840003, Japan
关键词
transcription factor; xylan utilization; xylose catabolism; Escherichia coli K-12; cryptic prophage; Genomic SELEX; PROKARYOTIC GENOME REGULATION; TRANSCRIPTION FACTORS; RNA-POLYMERASE; SELEX SEARCH; GENES; PROMOTERS; DEGRADATION; TARGETS; SYSTEMS; RUTR;
D O I
10.1093/femsle/fnx220
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The genome of Escherichia coli K-12 contains ten cryptic phages, altogether constituting about 3.6% of the genome in sequence. Among more than 200 predicted genes in these cryptic phages, 14 putative transcription factor (TF) genes exist, but their regulatory functions remain unidentified. As an initial attempt to make a breakthrough for understanding the regulatory roles of cryptic phage-encoded TFs, we tried to identify the regulatory function of CP4-6 cryptic prophage-encoded YagI with unknown function. After SELEX screening, YagI was found to bind mainly at a single site within the spacer of bidirectional transcription units, yagA (encoding another uncharacterized TF) and yagEF (encoding 2-keto-3-deoxy gluconate aldolase, and dehydratase, respectively) within this prophage region. YagEF enzymes are involved in the catabolism of xylose downstream from xylonate. We then designated YagI as XynR (regulator of xylonate catabolism), one of the rare single-target TFs. In agreement with this predicted regulatory function, the activity of XynR was suggested to be controlled by xylonate. Even though low-affinity binding sites of XynR were identified in the E. coli K-12 genome, they all were inside open reading frames, implying that the regulation network of XynR is still fixed within the CR4-6 prophage without significant influence over the host E. coli K-12.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Improvement of putrescine production through the arginine decarboxylase pathway in Escherichia coli K-12
    Thongbhubate, Kullathida
    Irie, Kanako
    Sakai, Yumi
    Itoh, Akane
    Suzuki, Hideyuki
    AMB EXPRESS, 2021, 11 (01)
  • [22] Dependence of swarming in Escherichia coli K-12 on spermidine and the spermidine importer
    Kurihara, Shin
    Suzuki, Hideyuki
    Tsuboi, Yuichi
    Benno, Yoshimi
    FEMS MICROBIOLOGY LETTERS, 2009, 294 (01) : 97 - 101
  • [23] Chromosome position effects on gene expression in Escherichia coli K-12
    Bryant, Jack A.
    Sellars, Laura E.
    Busby, Stephen J. W.
    Lee, David J.
    NUCLEIC ACIDS RESEARCH, 2014, 42 (18) : 11383 - 11392
  • [24] Transcriptomic profiling of Escherichia coli K-12 in response to a compendium of stressors
    Bhatia, Rama P.
    Kirit, Hande A.
    Predeus, Alexander V.
    Bollback, Jonathan P.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [25] Genome-Wide Transcriptional Response to Varying RpoS Levels in Escherichia coli K-12
    Wong, Garrett T.
    Bonocora, Richard P.
    Schep, Alicia N.
    Beeler, Suzannah M.
    Fong, Anna J. Lee
    Shull, Lauren M.
    Batachari, Lakshmi E.
    Dillon, Moira
    Evans, Ciaran
    Becker, Carla J.
    Bush, Eliot C.
    Hardin, Johanna
    Wade, Joseph T.
    Stoebel, Daniel M.
    JOURNAL OF BACTERIOLOGY, 2017, 199 (07)
  • [26] Determination of functional interactions among signalling pathways in Escherichia coli K-12
    Yang, YL
    Liao, JC
    METABOLIC ENGINEERING, 2005, 7 (04) : 280 - 290
  • [27] An evolutionarily conserved metabolite inhibits biofilm formation in Escherichia coli K-12
    Guo, Jingzhe
    van De Ven, Wilhelmina T.
    Skirycz, Aleksandra
    Thirumalaikumar, Venkatesh P.
    Zeng, Liping
    Zhang, Quanqing
    Balcke, Gerd Ulrich
    Tissier, Alain
    Dehesh, Katayoon
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [28] The EcoCyc database: reflecting new knowledge about Escherichia coli K-12
    Keseler, Ingrid M.
    Mackie, Amanda
    Santos-Zavaleta, Alberto
    Billington, Richard
    Bonavides-Martinez, Cesar
    Caspi, Ron
    Fulcher, Carol
    Gama-Castro, Socorro
    Kothari, Anamika
    Krummenacker, Markus
    Latendresse, Mario
    Muniz-Rascado, Luis
    Ong, Quang
    Paley, Suzanne
    Peralta-Gil, Martin
    Subhraveti, Pallavi
    Velazquez-Ramirez, David A.
    Weaver, Daniel
    Collado-Vides, Julio
    Paulsen, Ian
    Karp, Peter D.
    NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) : D543 - D550
  • [29] Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds
    Yung, Pui Yi
    Lo Grasso, Letizia
    Mohidin, Abeed Fatima
    Acerbi, Enzo
    Hinks, Jamie
    Seviour, Thomas
    Marsili, Enrico
    Lauro, Federico M.
    SCIENTIFIC REPORTS, 2016, 6
  • [30] Comparative Analysis of Envelope Proteomes in Escherichia coli B and K-12 Strains
    Han, Mee-Jung
    Lee, Sang Yup
    Hong, Soon Ho
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 22 (04) : 470 - 478