Galerkin finite element methods for stochastic parabolic partial differential equations

被引:181
作者
Yan, YB [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
关键词
stochastic parabolic partial differential equations; finite element method; additive noise;
D O I
10.1137/040605278
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the finite element method for stochastic parabolic partial differential equations driven by nuclear or space-time white noise in the multidimensional case. The discretization with respect to space is done by piecewise linear finite elements, and in time we apply the backward Euler method. The noise is approximated by using the generalized L-2-projection operator. Optimal strong convergence error estimates in the L-2 and (H)over dot(-1) norms with respect to the spatial variable are obtained. The proof is based on appropriate nonsmooth data error estimates for the corresponding deterministic parabolic problem. The computational analysis and numerical example are given.
引用
收藏
页码:1363 / 1384
页数:22
相关论文
共 31 条
[1]  
Allen E. J., 1998, STOCH STOCH REP, V64, P117, DOI DOI 10.1080/17442509808834159
[2]  
[Anonymous], 2000, STOCH STOCH REP, DOI [DOI 10.1080/17442500008834254, DOI 10.1080/17442500008834254), 10.1080/17442500008834254]
[3]  
[Anonymous], STOCH STOCH REP
[4]  
Benth F.E., 1998, STOCHAST STOCHAST RE, V63, P313, DOI DOI 10.1080/17442509808834153
[5]   Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions [J].
Chrysafinos, K ;
Hou, LS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) :282-306
[6]   ITOS LEMMA IN INFINITE DIMENSIONS [J].
CURTAIN, RF ;
FALB, PL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1970, 31 (02) :434-&
[7]   STOCHASTIC DIFFERENTIAL EQUATIONS IN HILBERT SPACE [J].
CURTAIN, RF ;
FALB, PL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1971, 10 (03) :412-&
[9]  
DAPRATO G, 1992, STOCHASTIC INFINITE
[10]  
DAPRATO G, 1998, MAT APPL, V9, P25