Biomineralization on enzymatically cross-linked gelatin hydrogels in the absence of dexamethasone

被引:22
作者
Bhatnagar, Divya [1 ,2 ]
Bherwani, Aneel K. [3 ]
Simon, Marcia [3 ]
Rafailovich, Miriam H. [1 ]
机构
[1] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11790 USA
[2] New Jersey Ctr Biomat, Piscataway, NJ 08854 USA
[3] Stony Brook Sch Dent Med, Dept Oral Biol & Pathol, Stony Brook, NY 11790 USA
基金
美国国家科学基金会;
关键词
PULP STEM-CELLS; ENDODONTICALLY TREATED TEETH; OF-THE-LITERATURE; DENTAL-PULP; BIOMECHANICAL CONSIDERATIONS; MICROBIAL TRANSGLUTAMINASE; TISSUE FORMATION; HUMAN TOOTH; IN-VITRO; DIFFERENTIATION;
D O I
10.1039/c5tb00482a
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
A mechanical stimulus and chemical induction by dexamethasone have been important factors in dental pulp stem cell (DPSC) differentiation and biomineralization. We have demonstrated that the enzymatically crosslinked gelatin hydrogels are extremely effective substrates for DPSC differentiation towards odontoblasts. DPSCs were seeded on the crosslinked hard (similar to 8 kPa) and soft (similar to 0.15 kPa) gelatin hydrogels for 35 days with and without dexamethasone. Odontogenic differentiation markers such as OCN, ALP and DSPP were upregulated after 35 days of culture on crosslinked hydrogels with and without dexamethasone. SEM and Alizarin red staining of the crosslinked hydrogels showed a biomineralized sheet of hydroxyapatite deposits laid by the DPSCs on the top surface and inside the hydrogel. We found that the DPSC differentiation and biomineralization were independent of the hydrogel stiffness and dexamethasone. We hypothesize that this biomineralization was indeed triggered by the surface chemistry of the crosslinked gelatin hydrogels since we did not observe any biomineralization on the uncrosslinked gelatin or mTG. We also showed that the DPSCs, when removed from hard hydrogel surfaces and re-seeded on a TCPS, retained their odontogenic lineage and showed a permanent mineralization effect. Our results show the potential of enzymatically crosslinked gelatin hydrogels as scaffolds for dentin regeneration.
引用
收藏
页码:5210 / 5219
页数:10
相关论文
共 59 条
[51]   Cluster analysis and gene expression profiles: A cDNA microarray system-based comparison between human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue engineering cell therapy [J].
Yamada, Y ;
Fujimoto, A ;
Ito, A ;
Yoshimi, R ;
Ueda, M .
BIOMATERIALS, 2006, 27 (20) :3766-3781
[52]   The performance of dental PCL/gelatin/nHA scaffolds pulp stem cells on nanofibrous [J].
Yang, Xuechao ;
Yang, Fang ;
Walboomers, X. Frank ;
Bian, Zhuan ;
Fan, Mingwen ;
Jansen, John A. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 93A (01) :247-257
[53]   Tissue engineering of complex tooth structures on biodegradable polymer scaffolds [J].
Young, CS ;
Terada, S ;
Vacanti, JP ;
Honda, M ;
Bartlett, JD ;
Yelick, PC .
JOURNAL OF DENTAL RESEARCH, 2002, 81 (10) :695-700
[54]   Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium [J].
Yu, Jinhua ;
Deng, Zhihong ;
Shi, Junnan ;
Zhai, Huihong ;
Nie, Xin ;
Zhuang, Heng ;
Li, Yucheng ;
Jin, Yan .
TISSUE ENGINEERING, 2006, 12 (11) :3097-3105
[55]   Transglutaminase crosslinked gelatin as a tissue engineering scaffold [J].
Yung, C. W. ;
Wu, L. Q. ;
Tullman, J. A. ;
Payne, G. F. ;
Bentley, W. E. ;
Barbari, T. A. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 83A (04) :1039-1046
[56]   Differentiation ability of rat postnatal dental pulp cells in vitro [J].
Zhang, W ;
Walboomers, XF ;
Wolke, JGC ;
Bian, Z ;
Fan, MW ;
Jansen, JA .
TISSUE ENGINEERING, 2005, 11 (3-4) :357-368
[57]   Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow [J].
Zhang, Weibo ;
Walboomers, X. Frank ;
Van Osch, Gerjo J. V. M. ;
Van den Dolder, Juliette ;
Jansen, John A. .
TISSUE ENGINEERING PART A, 2008, 14 (02) :285-294
[58]   The performance of human dental pulp stem cells on different three-dimensional scaffold materials [J].
Zhang, Weibo ;
Walboomers, X. Frank ;
van Kuppevelt, Toin H. ;
Daamen, Willeke F. ;
Bian, Zhuan ;
Jansen, John A. .
BIOMATERIALS, 2006, 27 (33) :5658-5668
[59]   Surface characterization of cross-linked elastomers by shear modulation force microscopy [J].
Zhang, Y ;
Ge, S ;
Rafailovich, MH ;
Sokolov, JC ;
Colby, RH .
POLYMER, 2003, 44 (11) :3327-3332