Biomineralization on enzymatically cross-linked gelatin hydrogels in the absence of dexamethasone

被引:21
|
作者
Bhatnagar, Divya [1 ,2 ]
Bherwani, Aneel K. [3 ]
Simon, Marcia [3 ]
Rafailovich, Miriam H. [1 ]
机构
[1] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11790 USA
[2] New Jersey Ctr Biomat, Piscataway, NJ 08854 USA
[3] Stony Brook Sch Dent Med, Dept Oral Biol & Pathol, Stony Brook, NY 11790 USA
基金
美国国家科学基金会;
关键词
PULP STEM-CELLS; ENDODONTICALLY TREATED TEETH; OF-THE-LITERATURE; DENTAL-PULP; BIOMECHANICAL CONSIDERATIONS; MICROBIAL TRANSGLUTAMINASE; TISSUE FORMATION; HUMAN TOOTH; IN-VITRO; DIFFERENTIATION;
D O I
10.1039/c5tb00482a
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
A mechanical stimulus and chemical induction by dexamethasone have been important factors in dental pulp stem cell (DPSC) differentiation and biomineralization. We have demonstrated that the enzymatically crosslinked gelatin hydrogels are extremely effective substrates for DPSC differentiation towards odontoblasts. DPSCs were seeded on the crosslinked hard (similar to 8 kPa) and soft (similar to 0.15 kPa) gelatin hydrogels for 35 days with and without dexamethasone. Odontogenic differentiation markers such as OCN, ALP and DSPP were upregulated after 35 days of culture on crosslinked hydrogels with and without dexamethasone. SEM and Alizarin red staining of the crosslinked hydrogels showed a biomineralized sheet of hydroxyapatite deposits laid by the DPSCs on the top surface and inside the hydrogel. We found that the DPSC differentiation and biomineralization were independent of the hydrogel stiffness and dexamethasone. We hypothesize that this biomineralization was indeed triggered by the surface chemistry of the crosslinked gelatin hydrogels since we did not observe any biomineralization on the uncrosslinked gelatin or mTG. We also showed that the DPSCs, when removed from hard hydrogel surfaces and re-seeded on a TCPS, retained their odontogenic lineage and showed a permanent mineralization effect. Our results show the potential of enzymatically crosslinked gelatin hydrogels as scaffolds for dentin regeneration.
引用
收藏
页码:5210 / 5219
页数:10
相关论文
共 50 条
  • [1] Enzymatically Cross-Linked Tilapia Gelatin Hydrogels: Physical, Chemical, and Hybrid Networks
    Bode, Franziska
    da Silva, Marcelo Alves
    Drake, Alex F.
    Ross-Murphy, Simon B.
    Dreiss, Cecile A.
    BIOMACROMOLECULES, 2011, 12 (10) : 3741 - 3752
  • [2] Enzymatically cross-linked injectable gelatin gel as osteoblast delivery vehicle
    Amini, Ashley A.
    Nair, Lakshmi S.
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2012, 27 (04) : 342 - 355
  • [3] Ionically and Enzymatically Dual Cross-Linked Oxidized Alginate Gelatin Hydrogels with Tunable Stiffness and Degradation Behavior for Tissue Engineering
    Distler, Thomas
    McDonald, Kilian
    Heid, Susanne
    Karakaya, Emine
    Detsch, Rainer
    Boccaccini, Aldo R.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2020, 6 (07): : 3899 - 3914
  • [4] Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells
    Wang, Li-Shan
    Du, Chan
    Chung, Joo Eun
    Kurisawa, Motoichi
    ACTA BIOMATERIALIA, 2012, 8 (05) : 1826 - 1837
  • [5] TGF-β1 presenting enzymatically cross-linked injectable hydrogels for improved chondrogenesis
    Arora, Aditya
    Mahajan, Aman
    Katti, Dhirendra S.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2017, 159 : 838 - 848
  • [6] Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers
    Dash, Rajalaxmi
    Foston, Marcus
    Ragauskas, Arthur J.
    CARBOHYDRATE POLYMERS, 2013, 91 (02) : 638 - 645
  • [7] Enzymatically cross-linked alginic-hyaluronic acid composite hydrogels as cell delivery vehicles
    Ganesh, Nitya
    Hanna, Craig
    Nair, Shantikumar V.
    Nair, Lakshmi S.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2013, 55 : 289 - 294
  • [8] Sealing effects of cross-linked gelatin
    Suzuki, S.
    Ikada, Y.
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2013, 27 (07) : 801 - 810
  • [9] Functional Assessment of Cross-Linked Porous Gelatin Hydrogels for Bioengineered Cell Sheet Carriers
    Lai, Jui-Yang
    Li, Ya-Ting
    BIOMACROMOLECULES, 2010, 11 (05) : 1387 - 1397
  • [10] Tailorable Cell Culture Platforms from Enzymatically Cross-Linked Multifunctional Poly(ethylene glycol)-Based Hydrogels
    Menzies, Donna J.
    Cameron, Andrew
    Munro, Trent
    Wolvetang, Ernst
    Grondahl, Lisbeth
    Cooper-White, Justin J.
    BIOMACROMOLECULES, 2013, 14 (02) : 413 - 423