Dynamic bulk-boundary correspondence for anomalous Floquet topology

被引:11
作者
Vu, Dinh Duy [1 ,2 ]
机构
[1] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Quantum Inst, Dept Phys, College Pk, MD 20742 USA
关键词
Boundary behaviour - Driven system - Driving periods - Floquet - Internal symmetry - Quasi-energy - Second orders - Spatial symmetry - Symmetrics - Time evolutions;
D O I
10.1103/PhysRevB.105.064304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Periodically driven systems with internal and spatial symmetries can exhibit a variety of anomalous boundary behaviors at both the zero and pi quasienergies despite the trivial bulk Floquet bands. These phenomena are called anomalous Floquet topology (AFT) as they are unconnected from their static counterpart, emerging from the winding of the time-evolution unitary rather than the bulk Floquet bands at the end of the driving period. In this paper, we systematically derive the first and inversion-symmetric second-order AFT bulk-boundary correspondence for Altland-Zirnbauer (AZ) classes BDI, D, DIII, and AII. For each AZ class, we start a dimensional hierarchy with a parent dimension having Z classification, then use it as an interpolating map to classify the lower-dimensional descendants. From the Atiyah-Hirzebruch spectral sequence, we identify the subspace that contains topological information and faithfully derive the AFT bulk-boundary correspondence for both the parent and descendants. Our theory provides analytic tools for out-of-equilibrium topological phenomena.
引用
收藏
页数:17
相关论文
共 58 条
  • [1] Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures
    Altland, A
    Zirnbauer, MR
    [J]. PHYSICAL REVIEW B, 1997, 55 (02): : 1142 - 1161
  • [2] [Anonymous], 2009, AIP C P, V1134, P22
  • [3] Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems
    Asboth, J. K.
    Tarasinski, B.
    Delplace, P.
    [J]. PHYSICAL REVIEW B, 2014, 90 (12):
  • [4] Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators
    Benalcazar, Wladimir A.
    Bernevig, B. Andrei
    Hughes, Taylor L.
    [J]. PHYSICAL REVIEW B, 2017, 96 (24)
  • [5] Bernevig B. A., ARXIV181002373
  • [6] Quantum spin Hall effect and topological phase transition in HgTe quantum wells
    Bernevig, B. Andrei
    Hughes, Taylor L.
    Zhang, Shou-Cheng
    [J]. SCIENCE, 2006, 314 (5806) : 1757 - 1761
  • [7] Topological Index for Periodically Driven Time-Reversal Invariant 2D Systems
    Carpentier, David
    Delplace, Pierre
    Fruchart, Michel
    Gawedzki, Krzysztof
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (10)
  • [8] Chen Y., ARXIV210906959
  • [9] Bulk topological invariants in noninteracting point group symmetric insulators
    Fang, Chen
    Gilbert, Matthew J.
    Bernevig, B. Andrei
    [J]. PHYSICAL REVIEW B, 2012, 86 (11)
  • [10] Multiterminal Conductance of a Floquet Topological Insulator
    Foa Torres, L. E. F.
    Perez-Piskunow, P. M.
    Balseiro, C. A.
    Usaj, Gonzalo
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (26)