Resistive-Switching Crossbar Memory Based on Ni-NiO Core-Shell Nanowires

被引:67
作者
Cagli, Carlo [2 ]
Nardi, Federico [2 ]
Harteneck, Bruce [1 ]
Tan, Zhongkui [1 ]
Zhang, Yuegang [1 ]
Ielmini, Daniele [2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[2] Politecn Milan, Dipartimento Elettron & Informaz, I-20133 Milan, Italy
关键词
NONVOLATILE MEMORY; LOGIC; NANOIMPRINT; CIRCUITS; FILMS;
D O I
10.1002/smll.201101157
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Resistive-switching memory (RRAM) is an emerging nanoscale device based on the localized metal-insulator transition within a few-nanometer-sized metal oxide region. RRAM is one of the most promising memory technologies for the ultimate downscaling of nonvolatile memory. However, to develop memory arrays with densities approaching 1 Tb cm(-2), bottom-up schemes based on synthesis and assembly of metal oxide nanowires (NWs) must be demonstrated. A RRAM memory device based on core-shell Ni-NiO NWs is presented, in which the Ni core plays the role of the metallic interconnect, while the NiO shell serves as the active switching layer. A resistance change of at least two orders of magnitude is shown on electrical operation of the device, and the metal-insulator switching is unequivocally demonstrated to take place in the NiO shell at the crossing between two NWs or between a NW and a gold electrode strip. Since the fabrication of the NW crossbar device is not limited by lithography, this approach may provide a basis for high-density, low-cost crossbar memory with long-term storage stability.
引用
收藏
页码:2899 / 2905
页数:7
相关论文
共 30 条
[1]   'Memristive' switches enable 'stateful' logic operations via material implication [J].
Borghetti, Julien ;
Snider, Gregory S. ;
Kuekes, Philip J. ;
Yang, J. Joshua ;
Stewart, Duncan R. ;
Williams, R. Stanley .
NATURE, 2010, 464 (7290) :873-876
[2]  
Chai Y., 2010, IEEE International Electron Devices Meeting (IEDM)
[3]  
2010 San Francisco, P214
[4]   Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition -: art. no. 033715 [J].
Choi, BJ ;
Jeong, DS ;
Kim, SK ;
Rohde, C ;
Choi, S ;
Oh, JH ;
Kim, HJ ;
Hwang, CS ;
Szot, K ;
Waser, R ;
Reichenberg, B ;
Tiedke, S .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (03)
[5]   Oxidation kinetics of Ni metallic films: Formation of NiO-based resistive switching structures [J].
Courtade, L. ;
Turquat, Ch. ;
Muller, Ch. ;
Lisoni, J. G. ;
Goux, L. ;
Wouters, D. J. ;
Goguenheim, D. ;
Roussel, P. ;
Ortega, L. .
THIN SOLID FILMS, 2008, 516 (12) :4083-4092
[6]   Si/a-Si core/shell nanowires as nonvolatile crossbar switches [J].
Dong, Yajie ;
Yu, Guihua ;
McAlpine, Michael C. ;
Lu, Wei ;
Lieber, Charles M. .
NANO LETTERS, 2008, 8 (02) :386-391
[7]   Nonvolatile memory and programmable logic from molecule-gated nanowires [J].
Duan, XF ;
Huang, Y ;
Lieber, CM .
NANO LETTERS, 2002, 2 (05) :487-490
[8]  
Goux L., 2009, IEEE T ELECTRON DEV, V56, P10
[9]   Logic gates and computation from assembled nanowire building blocks [J].
Huang, Y ;
Duan, XF ;
Cui, Y ;
Lauhon, LJ ;
Kim, KH ;
Lieber, CM .
SCIENCE, 2001, 294 (5545) :1313-1317
[10]   Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories [J].
Ielmini, D. ;
Nardi, F. ;
Cagli, C. .
NANOTECHNOLOGY, 2011, 22 (25)