On functions that are almost continuous and perfectly everywhere surjective but not Jones. Lineability and additivity

被引:7
作者
Ciesielski, K. C. [1 ,2 ]
Gamez-Merino, J. L. [3 ]
Natkaniec, T. [4 ]
Seoane-Sepulveda, J. B. [5 ]
机构
[1] West Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[2] Univ Penn, MIPG, Dept Radiol, Philadelphia, PA 19104 USA
[3] Univ Complutense Madrid, Dept Anal Matemat & Matemat Aplicada, Fac Ciencias Mat, Plaza Ciencias 3, E-28040 Madrid, Spain
[4] Univ Gdansk, Inst Math, Fac Math Phys & Informat, Ul Wita Stwosza 57, PL-80952 Gdansk, Poland
[5] Univ Complutense Madrid, IMI, Dept Anal Matemat & Matemat Aplicada, Fac Ciencias Matemat, Plaza Ciencias 3, E-28040 Madrid, Spain
关键词
Lineability; Additivity; Perfectly everywhere surjective; Jones function; Almost continuous function; Bernstein set; Almost disjoint family; Covering Property Axiom CPA; ALGEBRAIC STRUCTURES; VECTOR-SPACES; R-R; ALGEBRABILITY; SPACEABILITY; SETS;
D O I
10.1016/j.topol.2017.12.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the class of functions that are perfectly everywhere surjective and almost continuous in the sense of Stallings but are not Jones functions is c(+)-lineable. Moreover, it is consistent that this class is 2(c)-lineable, as this holds when 2(<c) = c. We also prove that the additivity number for this class is between col and c. This lower bound can be achieved even when omega(1) < c, as it is implied by the Covering Property Axiom CPA. The main step in this proof is the following theorem, which is of independent interest: CPA implies that there exists a family F subset of C(R) of cardinality omega(1) < c such that for every g is an element of C(R) the set g \ boolean OR F has cardinality less than c. Some open problems are posed as well. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 82
页数:10
相关论文
共 28 条
[1]  
[Anonymous], 1996, B POLISH ACAD SCI MA, V44, P251
[2]   Lineability and spaceability of sets of functions on R [J].
Aron, R ;
Gurariy, VI ;
Seoane, JB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) :795-803
[3]   Powers of hypercyclic functions for some classical hypercyclic operators [J].
Aron, R. M. ;
Conejero, J. A. ;
Peris, A. ;
Seoane-Sepulveda, J. B. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 58 (04) :591-596
[4]   On dense-lineability of sets of functions on R [J].
Aron, R. M. ;
Garcia-Pacheco, F. J. ;
Perez-Garcia, D. ;
Seoane-Sepulveda, J. B. .
TOPOLOGY, 2009, 48 (2-4) :149-156
[5]   Algebrability of the set of everywhere surjective functions on C [J].
Aron, Richard M. ;
Seoane-Sepulveda, Juan B. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (01) :25-31
[6]   Algebrability of the set of non-convergent Fourier series [J].
Aron, Richard M. ;
Perez-Garcia, David ;
Seoane-Sepulveda, Juan B. .
STUDIA MATHEMATICA, 2006, 175 (01) :83-90
[7]   Algebraic structures in the sets of surjective functions [J].
Bartoszewicz, Artur ;
Bienias, Marek ;
Glab, Szymon ;
Natkaniec, Tomasz .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (02) :574-585
[8]   Additivity and lineability in vector spaces [J].
Bartoszewicz, Artur ;
Glab, Szymon .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (07) :2123-2130
[9]   Algebrability and nowhere Gevrey differentiability [J].
Bastin, F. ;
Conejero, J. A. ;
Esser, C. ;
Seoane-Sepulveda, J. B. .
ISRAEL JOURNAL OF MATHEMATICS, 2015, 205 (01) :127-143
[10]   Lineability criteria, with applications [J].
Bernal-Gonzalez, Luis ;
Ordonez Cabrera, Manuel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (06) :3997-4025