共 50 条
Isometry -invariant solutions to a critical problem on non -compact Riemannian manifolds
被引:5
|作者:
Bisci, Giovanni Molica
[1
]
Vilasi, Luca
[2
]
机构:
[1] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Italy
[2] Univ Messina, Dept Math & Comp Sci, Phys Sci & Earth Sci, Viale F Stagno Alcontres,31, I-98166 Messina, Italy
关键词:
Non-compact Riemannian manifold;
Critical equation;
Isometry;
Existence;
Multiplicity;
YAMABE PROBLEM;
CONFORMAL DEFORMATION;
SCALAR CURVATURE;
EQUATIONS;
D O I:
10.1016/j.jde.2020.04.013
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We analyse an elliptic equation with critical growth set on a d-dimensional (d >= 3) Hadamard manifold (M, g). By adopting a variational perspective, we prove the existence of non-zero non-negative solutions invariant under the action of a specific family of isometrics. Our result remains valid when the original nonlinearity is singularly perturbed. Preserving the same variational approach, but considering other groups of isometrics, we finally show that when M = R-d, d > 3, and the nonlinearity is odd, there exist at least (-1)(d) + [d-3/2] pairs of sign-changing solutions. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:5491 / 5519
页数:29
相关论文