Vector valued Beurling algebra analogues of Wiener's theorem

被引:0
作者
Dabhi, Prakash A. [1 ]
Solanki, Karishman B. [1 ]
机构
[1] Inst Infrastruct Technol Res & Management IITRAM, Ahmadabad 380026, Gujarat, India
关键词
Wiener's theorem; Fourier series; Weight; Banach algebra;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 0<p & LE;1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p\le 1$$\end{document}, & omega;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} be a weight on Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z$$\end{document}, and let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal A$$\end{document} be a unital Banach algebra. If f is a continuous function from the unit circle T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb T$$\end{document} to A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal A$$\end{document} such that n-ary sumation n & ISIN;Z||f<^>(n)||p & omega;(n)p<& INFIN;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n\in \mathbb Z} \Vert \widehat{f}(n)\Vert <^>p \omega (n)<^>p<\infty $$\end{document} and f(z) is left invertible for all z & ISIN;T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z \in \mathbb T$$\end{document}, then there is a weight & nu;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} on Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z$$\end{document} and a continuous function g:T & RARR;A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g:\mathbb T \rightarrow \mathcal A$$\end{document} such that 1 & LE;& nu;& LE;& omega;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le \nu \le \omega $$\end{document}, & nu;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} is constant if and only if & omega;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} is constant, & nu;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} is admissible if and onl y if & omega;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} is admissible, g is a left inverse of f and n-ary sumation n & ISIN;Z||g<^>(n)||p & nu;(n)p<& INFIN;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n\in \mathbb Z}\Vert \widehat{g}(n)\Vert <^>p\nu (n)<^>p<\infty $$\end{document}. We shall obtain a similar result when & omega;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} is a p-almost monotone algebra weight and 1<p<& INFIN;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document}. We shall obtain an analogue of this result on the real line.
引用
收藏
页数:14
相关论文
共 11 条
[2]   Beurling algebra analogues of theorems of Wiener-Levy-Zelazko and Zelazko [J].
Bhatt, S. J. ;
Dabhi, P. A. ;
Dedania, H. V. .
STUDIA MATHEMATICA, 2009, 195 (03) :219-225
[3]   Beurling algebra analogues of the classical theorems of Wiener and Levy on absolutely convergent Fourier series [J].
Bhatt, SJ ;
Dedania, HV .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2003, 113 (02) :179-182
[4]   Absolutely convergent fourier expansions for non-commutative normed rings [J].
Bochner, S ;
Phillips, RS .
ANNALS OF MATHEMATICS, 1942, 43 :409-418
[5]  
Dabhi PA, 2020, ADV OPER THEORY, V5, P1832, DOI 10.1007/s43036-020-00090-6
[6]   HARMONIC ANALYSIS BASED ON CERTAIN COMMUTATIVE BANACH ALGEBRAS [J].
DOMAR, Y .
ACTA MATHEMATICA, 1956, 96 (1-2) :1-66
[7]  
GELFAND I, 1964, COMMUTATIVE NORMED R
[8]   WEIGHTED SHIFTS AND BANACH ALGEBRAS OF POWER-SERIES [J].
GRABINER, S .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (01) :16-42
[9]  
Kaniuth E, 2009, GRAD TEXTS MATH, V246, P1, DOI 10.1007/978-0-387-72476-8_1
[10]   Tauberian theorems. [J].
Wiener, N .
ANNALS OF MATHEMATICS, 1932, 33 :1-100