Multipartite-entanglement monotones and polynomial invariants

被引:30
作者
Eltschka, Christopher [1 ]
Bastin, Thierry [2 ]
Osterloh, Andreas [3 ]
Siewert, Jens [4 ,5 ]
机构
[1] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[2] Univ Liege, Inst Phys Nucl Atom & Spect, B-4000 Liege, Belgium
[3] Univ Duisburg Essen, Fak Phys, D-47048 Duisburg, Germany
[4] Univ Pais Vasco UPV EHU, Dept Quim Fis, E-48080 Bilbao, Spain
[5] Basque Fdn Sci, IKERBASQUE, E-48011 Bilbao, Spain
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 02期
关键词
Quantum computers - Stochastic systems;
D O I
10.1103/PhysRevA.85.022301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that a positive homogeneous function that is invariant under determinant-1 stochastic local operations and classical communication (SLOCC) transformations defines an N-qubit entanglement monotone if and only if the homogeneous degree is not larger than 4. We then describe a common basis and formalism for the N-tangle and other known invariant polynomials of degree 4. This allows us to elucidate the relation of the four-qubit invariants defined by Luque and Thibon [Phys. Rev. A 67, 042303 (2003)] and the reduced two-qubit density matrices of the states under consideration, thus giving a physical interpretation for those invariants. We demonstrate that this is a special case of a completely general law that holds for any multipartite system with bipartitions of equal dimension, e. g., for an even number of qudits.
引用
收藏
页数:4
相关论文
共 27 条
[1]   Exact and asymptotic measures of multipartite pure-state entanglement [J].
Bennett, Charles H., 2001, American Inst of Physics, Woodbury (63)
[2]   A complete set of covariants of the four qubit system [J].
Briand, E ;
Luque, JG ;
Thibon, JY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (38) :9915-9927
[3]  
Brylinski J.-L., 2002, MATH QUANTUM COMPUTA
[4]   Canonical decompositions of n-qubit quantum computations and concurrence [J].
Bullock, SS ;
Brennen, GK .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (06) :2447-2467
[5]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[6]   On polynomial invariants of several qubits [J].
Dokovic, D. Z. ;
Osterloh, A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (03)
[7]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[8]   Mixed-state entanglement of assistance and the generalized concurrence [J].
Gour, G .
PHYSICAL REVIEW A, 2005, 72 (04)
[9]   All maximally entangled four-qubit states [J].
Gour, Gilad ;
Wallach, Nolan R. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (11)
[10]   Entanglement of a pair of quantum bits [J].
Hill, S ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1997, 78 (26) :5022-5025