A Review of Smart Battery Management Systems for LiFePO4: Key Issues and Estimation Techniques for Microgrids

被引:1
作者
Magsumbol, Jo-Ann, V [1 ]
Rosales, Marife A. [1 ]
Palconit, Maria Gemel B. [1 ]
Concepcion, Ronnie S., II [2 ,3 ]
Bandala, Argel A. [1 ,3 ]
Vicerra, Ryan Rhay P. [2 ,3 ]
Sybingco, Edwin [1 ,3 ]
Culaba, Alvin [3 ,4 ]
Dadios, Elmer P. [2 ,3 ]
机构
[1] De La Salle Univ DLSU, Dept Elect & Comp Engn, 2401 Taft Ave, Manila 1004, Philippines
[2] De La Salle Univ DLSU, Dept Mfg Engn & Management, 2401 Taft Ave, Manila 1004, Philippines
[3] De La Salle Univ DLSU, Ctr Engn & Sustainable Dev Res, 2401 Taft Ave, Manila 1004, Philippines
[4] De La Salle Univ DLSU, Dept Mech Engn, 2401 Taft Ave, Manila 1004, Philippines
关键词
battery management system; state of charge; state of health; remaining useful life; LiFePO4; LITHIUM-ION BATTERY; OF-CHARGE ESTIMATION; HEALTH ESTIMATION; STATE; CHALLENGES; IMPEDANCE; VOLTAGE; PACKS;
D O I
10.20965/jaciii.2022.p0824
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lithium iron phosphate (LiFePO4) has become the top choice battery chemical in photovoltaic (PV) system nowadays due to numerous advantages as compared to lead acid batteries. However, LiFePO4 needs a battery management system to optimize energy utilization. State of charge (SoC), state of health (SoH), cell balancing, remaining useful life are some of its crucial parameters. This review paper discusses overview of battery management system (BMS) functions, LiFePO4 characteristics, key issues, estimation techniques, main features, and drawbacks of using this battery type.
引用
收藏
页码:824 / 833
页数:10
相关论文
共 50 条
  • [1] State of Health Estimation of LiFePO4 Batteries for Battery Management Systems
    Khalid, Areeb
    Kashif, Syed Abdul Rahman
    Ul Ain, Noor
    Nasir, Ali
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 3149 - 3164
  • [2] Online State of Charge EKF Estimation for LiFePO4 Battery Management Systems
    Zhu, Zheng
    Sun, Jinwei
    Liu, Dan
    IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATIONS SYSTEMS (ISPACS 2012), 2012,
  • [3] Lifetime estimation of grid connected LiFePO4 battery energy storage systems
    Mahesh, M.
    Bhaskar, D. Vijaya
    Jisha, R. K.
    Krishan, Ram
    Gnanadass, R.
    ELECTRICAL ENGINEERING, 2022, 104 (01) : 67 - 81
  • [4] Battery Modelling and SOC Estimation of a LiFePO4 Battery
    Ke, Ming-Yang
    Chiu, Yu-Hsiang
    Wu, Chi-Yao
    2016 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C), 2016, : 208 - 211
  • [5] Modeling and SOC Estimation of LiFePO4 Battery
    Cheng, Peng
    Zhou, Yimin
    Song, Zhibin
    Ou, Yongsheng
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2016, : 2140 - 2144
  • [6] A method for SOC estimation based on simplified mechanistic model for LiFePO4 battery
    Li, Junfu
    Lai, Qingzhi
    Wang, Lixin
    Lyu, Chao
    Wang, Han
    ENERGY, 2016, 114 : 1266 - 1276
  • [7] Lifetime estimation of grid connected LiFePO4 battery energy storage systems
    M. Mahesh
    D. Vijaya Bhaskar
    R. K. Jisha
    Ram Krishan
    R. Gnanadass
    Electrical Engineering, 2022, 104 : 67 - 81
  • [8] Battery Internal Temperature Estimation for LiFePO4 Battery Based on Impedance Phase Shift under Operating Conditions
    Zhu, Jiangong
    Sun, Zechang
    Wei, Xuezhe
    Dai, Haifeng
    ENERGIES, 2017, 10 (01)
  • [9] Estimation of Battery State of Health Using the Two-Pulse Method for LiFePO4 Batteries
    Zuluaga, Carolina
    Zuluaga, Carlos A.
    Restrepo, Jose V.
    ENERGIES, 2023, 16 (23)
  • [10] LiFePO4 Battery Pack Capacity Estimation for Electric Vehicles Based on Unscented Kalman Filter
    Zhao, Lei
    Xu, Guoqing
    Li, Weimin
    Taimoor, Zahid
    Song, Zhibin
    2013 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2013, : 301 - 305