Edge Enhancement for Image Segmentation Using a RKHS Method

被引:1
作者
Burrows, Liam [1 ,2 ]
Guo, Weihong [3 ]
Chen, Ke [1 ,2 ]
Torella, Francesco [4 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool, Merseyside, England
[2] Univ Liverpool, Ctr Math Imaging Tech, Liverpool, Merseyside, England
[3] Case Western Reserve Univ, Dept Math Appl Math & Stat, 2049 Martin Luther King Jr Dr, Cleveland, OH 44106 USA
[4] Royal Liverpool & Broadgreen Univ Hosp, Dept Radiol, Liverpool L7 8XP, Merseyside, England
来源
MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2019 | 2020年 / 1065卷
基金
英国工程与自然科学研究理事会;
关键词
Image segmentation; RKHS; Heaviside function; VARIATIONAL MODEL; ACTIVE CONTOURS;
D O I
10.1007/978-3-030-39343-4_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation has many important applications, particularly in medical imaging. Often medical images such as CTs have little contrast in them, and segmentation in such cases poses a great challenge to existing models without further user interaction. In this paper we propose an edge enhancement method based on the theory of reproducing kernel Hilbert spaces (RKHS) to model smooth components of an image, while separating the edges using approximated Heaviside functions. By modelling using this decomposition method, the approximated Heaviside function is capable of picking up more details than the usual method of using the image gradient. Further using this as an edge detector in a segmentation model can allow us to pick up a region of interest when low contrast between two objects is present and other models fail.
引用
收藏
页码:198 / 207
页数:10
相关论文
共 12 条
[1]   Image Selective Segmentation under Geometrical Constraints Using an Active Contour Approach [J].
Badshah, Noor ;
Chen, Ke .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 7 (04) :759-778
[2]   Fast global minimization of the active Contour/Snake model [J].
Bresson, Xavier ;
Esedoglu, Selim ;
Vandergheynst, Pierre ;
Thiran, Jean-Philippe ;
Osher, Stanley .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2007, 28 (02) :151-167
[3]   Geodesic active contours [J].
Caselles, V ;
Kimmel, R ;
Sapiro, G .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 22 (01) :61-79
[4]   Active contours without edges [J].
Chan, TF ;
Vese, LA .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (02) :266-277
[5]   Single-Image Super-Resolution via an Iterative Reproducing Kernel Hilbert Space Method [J].
Deng, Liang-Jian ;
Guo, Weihong ;
Huang, Ting-Zhu .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2016, 26 (11) :2001-2014
[6]   Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods [J].
Gout, C ;
Le Guyader, C ;
Vese, L .
NUMERICAL ALGORITHMS, 2005, 39 (1-3) :155-173
[7]   SNAKES - ACTIVE CONTOUR MODELS [J].
KASS, M ;
WITKIN, A ;
TERZOPOULOS, D .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1987, 1 (04) :321-331
[8]   OPTIMAL APPROXIMATIONS BY PIECEWISE SMOOTH FUNCTIONS AND ASSOCIATED VARIATIONAL-PROBLEMS [J].
MUMFORD, D ;
SHAH, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (05) :577-685
[9]   A New Variational Model with Dual Level Set Functions for Selective Segmentation [J].
Rada, Lavdie ;
Chen, Ke .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2012, 12 (01) :261-283
[10]  
Roberts M., 2018, J MATH IMAGING VIS, V61, P1