Deep Learning-Based COVID-19 Pneumonia Classification Using Chest CT Images: Model Generalizability

被引:12
|
作者
Nguyen, Dan [1 ,2 ]
Kay, Fernando [3 ]
Tan, Jun [2 ]
Yan, Yulong [2 ]
Ng, Yee Seng [3 ]
Iyengar, Puneeth [2 ]
Peshock, Ron [3 ]
Jiang, Steve [1 ,2 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Med Artificial Intelligence & Automat MAIA Lab, Dallas, TX 75390 USA
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Radiat Oncol, Dallas, TX 75390 USA
[3] Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
来源
FRONTIERS IN ARTIFICIAL INTELLIGENCE | 2021年 / 4卷
关键词
deep learning; generalizability; convolutional neural network; classification; computed tomography; COVID-19; SARS-CoV-2; DIAGNOSIS; FEATURES;
D O I
10.3389/frai.2021.694875
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Since the outbreak of the COVID-19 pandemic, worldwide research efforts have focused on using artificial intelligence (AI) technologies on various medical data of COVID-19-positive patients in order to identify or classify various aspects of the disease, with promising reported results. However, concerns have been raised over their generalizability, given the heterogeneous factors in training datasets. This study aims to examine the severity of this problem by evaluating deep learning (DL) classification models trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries. We collected one dataset at UT Southwestern (UTSW) and three external datasets from different countries: CC-CCII Dataset (China), COVID-CTset (Iran), and MosMedData (Russia). We divided the data into two classes: COVID-19-positive and COVID-19- negative patients. We trained nine identical DL-based classification models by using combinations of datasets with a 72% train, 8% validation, and 20% test data split. Themodels trained on a single dataset achieved accuracy/area under the receiver operating characteristic curve (AUC) values of 0.87/0.826 (UTSW), 0.97/0.988 (CC-CCCI), and 0.86/0.873 (COVID-CTset) when evaluated on their own dataset. The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better. However, the performance dropped close to an AUC of 0.5 (random guess) for all models when evaluated on a different dataset outside of its training datasets. Including MosMedData, which only contained positive labels, into the training datasets did not necessarily help the performance of other datasets. Multiple factors likely contributed to these results, such as patient demographics and differences in image acquisition or reconstruction, causing a data shift among different study cohorts.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Pneumonia Classification Using Deep Learning from Chest X-ray Images During COVID-19
    Ibrahim, Abdullahi Umar
    Ozsoz, Mehmet
    Serte, Sertan
    Al-Turjman, Fadi
    Yakoi, Polycarp Shizawaliyi
    COGNITIVE COMPUTATION, 2024, 16 (04) : 1589 - 1601
  • [22] CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images
    Hussain, Emtiaz
    Hasan, Mahmudul
    Rahman, Md Anisur
    Lee, Ickjai
    Tamanna, Tasmi
    Parvez, Mohammad Zavid
    CHAOS SOLITONS & FRACTALS, 2021, 142
  • [23] Deep Learning-Based Approaches to Improve Classification Parameters for Diagnosing COVID-19 from CT Images
    Yasar, Huseyin
    Ceylan, Murat
    COGNITIVE COMPUTATION, 2024, 16 (04) : 1806 - 1833
  • [24] A Deep Learning Ensemble Approach for Automated COVID-19 Detection from Chest CT Images
    Zazzaro, Gaetano
    Martone, Francesco
    Romano, Gianpaolo
    Pavone, Luigi
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (24)
  • [25] Deep learning-based COVID-19 diagnosis using CT scans with laboratory and physiological parameters
    Sameer, Humam Adnan
    Mutlag, Ammar Hussein
    Gharghan, Sadik Kamel
    IET IMAGE PROCESSING, 2023, 17 (11) : 3127 - 3142
  • [26] Deep transfer learning based classification model for covid-19 using chest CT-scans
    Lahsaini, Ilyas
    El Habib Daho, Mostafa
    Chikh, Mohamed Amine
    PATTERN RECOGNITION LETTERS, 2021, 152 : 1 - 7
  • [27] Detecting COVID-19 in chest images based on deep transfer learning and machine learning algorithms
    Rezaeijo, Seyed Masoud
    Ghorvei, Mohammadreza
    Abedi-Firouzjah, Razzagh
    Mojtahedi, Hesam
    Zarch, Hossein Entezari
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2021, 52 (01)
  • [28] Detection and Severity Classification of COVID-19 in CT Images Using Deep Learning
    Qiblawey, Yazan
    Tahir, Anas
    Chowdhury, Muhammad E. H.
    Khandakar, Amith
    Kiranyaz, Serkan
    Rahman, Tawsifur
    Ibtehaz, Nabil
    Mahmud, Sakib
    Maadeed, Somaya Al
    Musharavati, Farayi
    Ayari, Mohamed Arselene
    DIAGNOSTICS, 2021, 11 (05)
  • [29] Deep Learning in Classification of Covid-19 Coronavirus, Pneumonia and Healthy Lungs on CXR and CT Images
    Lascu, Mihaela-Ruxandra
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2021, 41 (04) : 514 - 522
  • [30] Deep Learning in Classification of Covid-19 Coronavirus, Pneumonia and Healthy Lungs on CXR and CT Images
    Mihaela-Ruxandra Lascu
    Journal of Medical and Biological Engineering, 2021, 41 : 514 - 522