A stochastic mussel-algae model under regime switching

被引:3
作者
Xie, Yan [1 ]
Liu, Zhijun [1 ]
Qi, Ke [1 ]
Shangguan, Dongchen [1 ]
Wang, Qinglong [1 ]
机构
[1] Hubei Minzu Univ, Sch Math & Stat, Enshi 445000, Hubei, Peoples R China
关键词
mussel-algae model; brownian motion; regime switching; extinction; ergodic stationary distribution; SIRS EPIDEMIC MODEL; STATIONARY DISTRIBUTION; SPATIAL-PATTERNS; MYTILUS-EDULIS; ZEBRA MUSSELS; ERGODICITY; DYNAMICS; POPULATION; PHYTOPLANKTON; BEHAVIOR;
D O I
10.3934/mbe.2022224
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate a novel model of coupled stochastic differential equations modeling the interaction of mussel and algae in a random environment, in which combined effect of white noises and telegraph noises formulated under regime switching are incorporated. We derive sufficient condition of extinction for mussel species. Then with the help of stochastic Lyapunov functions, a well-grounded understanding of the existence of ergodic stationary distribution is obtained. Meticulous numerical examples are also employed to visualize our theoretical results in detail. Our analytical results indicate that dynamic behaviors of the stochastic mussel-algae model are intimately associated with two kinds of random perturbations.
引用
收藏
页码:4794 / 4811
页数:18
相关论文
共 48 条
[1]  
Allegretti S., 2021, MATH MODEL NUMER SIM, V1, P56, DOI [10.53391/mmnsa.2021.01.006, DOI 10.53391/MMNSA.2021.01.006]
[2]  
[Anonymous], 2006, STOCHASTIC DIFFERENT, DOI [DOI 10.1142/P473, 10.1142/p473]
[3]  
ARNOLD L, 1979, Biometrical Journal, V21, P451, DOI 10.1002/bimj.4710210507
[4]   Stochastic delay foraging arena predator-prey system with Markov switching [J].
Cai, Yongmei ;
Cai, Siyang ;
Mao, Xuerong .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2020, 38 (02) :191-212
[5]   Nonlinear stability analyses of Turing patterns for a mussel-algae model [J].
Cangelosi, Richard A. ;
Wollkind, David J. ;
Kealy-Dichone, Bonni J. ;
Chaiya, Inthira .
JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 70 (06) :1249-1294
[6]  
Colby Peter J., 1994, Aqua Fennica, V24, P9
[7]   Turing-Hopf bifurcation in a diffusive mussel-algae model with time-fractional-order derivative [J].
Djilali, Salih ;
Ghanbari, Behzad ;
Bentout, Soufiane ;
Mezouaghi, Abdelheq .
CHAOS SOLITONS & FRACTALS, 2020, 138
[8]   Algal concentration profiles above mussel beds [J].
Dolmer, P .
JOURNAL OF SEA RESEARCH, 2000, 43 (02) :113-119
[9]   Effects of increasing temperatures on population dynamics of the zebra mussel Dreissena polymorpha:: implications from an individual-based model [J].
Griebeler, Eva Maria ;
Seitz, Alfred .
OECOLOGIA, 2007, 151 (03) :530-543
[10]   Wavetrain Solutions of a Reaction-Diffusion-Advection Model of Mussel-Algae Interaction [J].
Holzer, Matt ;
Popovic, Nikola .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (01) :431-478